Kontaktujte nás | Jazyk: čeština English
dc.title | Powder injection molded ceramic scaffolds: The role of pores size and surface functionalization on the cytocompatibility | en |
dc.contributor.author | Martínková, Martina | |
dc.contributor.author | Hausnerová, Berenika | |
dc.contributor.author | Huba, Jakub | |
dc.contributor.author | Martínek, Tomáš | |
dc.contributor.author | Káčerová, Simona | |
dc.contributor.author | Kašpárková, Věra | |
dc.contributor.author | Humpolíček, Petr | |
dc.relation.ispartof | Materials and Design | |
dc.identifier.issn | 0264-1275 Scopus Sources, Sherpa/RoMEO, JCR | |
dc.identifier.issn | 1873-4197 Scopus Sources, Sherpa/RoMEO, JCR | |
dc.date.issued | 2022 | |
utb.relation.volume | 224 | |
dc.type | article | |
dc.language.iso | en | |
dc.publisher | Elsevier Ltd | |
dc.identifier.doi | 10.1016/j.matdes.2022.111274 | |
dc.relation.uri | https://www.sciencedirect.com/science/article/pii/S0264127522008966 | |
dc.relation.uri | https://www.sciencedirect.com/science/article/pii/S0264127522008966/pdfft?md5=16f4b0e8f65179f2c186435ec5525298&pid=1-s2.0-S0264127522008966-main.pdf | |
dc.subject | powder injection molding | en |
dc.subject | surface modification | en |
dc.subject | polyaniline | en |
dc.subject | alumina | en |
dc.subject | tissue engineering | en |
dc.subject | cytocompatibility | en |
dc.description.abstract | The alumina-based scaffolds prepared by powder injection molding can be preferentially used for preparation of bone grafts. Here, the final architecture of alumina scaffolds was efficiently controlled by powder space holder size and volume ratio. The alumina is not intrinsically cell-instructive material and thus the coating with electrically-conducting polyaniline or polyaniline/biopolymer films prepared in a colloidal dispersion mode was used to provide this advanced property. The component of the extracellular matrix, sodium hyaluronate, or natural biopolymers (sodium alginate or chitosan) were employed, and, subsequently, the cytocompatibility of the native and functionalized alumina scaffolds were determined. Both the absence of cytotoxicity and the cytocompatibility that were revealed demonstrate the application potential of these composites. The scaffolds with pore size greater than 250 µm were more cytocompatibility than those with pores size between 125 and 250 µm. The cytocompatibility was confirmed under in vivo-mimicking dynamic cultivation conditions which further improve the cell distribution and growth. © 2022 The Authors | en |
utb.faculty | University Institute | |
utb.faculty | Faculty of Technology | |
utb.faculty | Faculty of Applied Informatics | |
dc.identifier.uri | http://hdl.handle.net/10563/1011201 | |
utb.identifier.obdid | 43884124 | |
utb.identifier.scopus | 2-s2.0-85140885696 | |
utb.identifier.wok | 000882331300001 | |
utb.source | j-scopus | |
dc.date.accessioned | 2022-11-29T07:49:18Z | |
dc.date.available | 2022-11-29T07:49:18Z | |
dc.description.sponsorship | RP/CPS/2022/001, RP/CPS/2022/003; CZ.02.2.69/0.0/0.0/19_073/0016941, JUNG-2020-001; Ministerstvo Školství, Mládeže a Tělovýchovy, MŠMT; Grantová Agentura České Republiky, GA ČR: 20-28732S | |
dc.description.sponsorship | project OP RDE Junior Grants of TBU in Zlin [20-28732S]; Czech Science Foundation [RP/CPS/2022/001]; Ministry of Education, Youth and Sports of the Czech Republic [RP/CPS/2022/003]; [CZ.02.2.69/0.0/0.0/19_073/001694 1] | |
dc.rights | Attribution-NonCommercial-NoDerivs 4.0 International | |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.rights.access | openAccess | |
utb.ou | Centre of Polymer Systems | |
utb.contributor.internalauthor | Martínková, Martina | |
utb.contributor.internalauthor | Hausnerová, Berenika | |
utb.contributor.internalauthor | Huba, Jakub | |
utb.contributor.internalauthor | Martínek, Tomáš | |
utb.contributor.internalauthor | Káčerová, Simona | |
utb.contributor.internalauthor | Kašpárková, Věra | |
utb.contributor.internalauthor | Humpolíček, Petr | |
utb.fulltext.affiliation | Martina Martínková a,⇑, Berenika Hausnerová a,b, Jakub Huba b, Tomáš Martínek c, Simona Káčerová a, Věra Kašpárková a,b, Petr Humpolíček a,b,⇑ a Tomas Bata University in Zlin, Centre of Polymer Systems, tr. Tomase Bati 5678, Zlin 76001, Czech Republic b Tomas Bata University in Zlin, Faculty of Technology, Vavreckova, 275, Zlin 76001, Czech Republic c Tomas Bata University in Zlin, Faculty of Applied Informatics, Nad Stranemi, 4511, Zlin 76005, Czech Republic ⇑ Corresponding authors. E-mail addresses: martinkova@utb.cz (M. Martínková), hausnerova@utb.cz (B. Hausnerová), jhuba@utb.cz (J. Huba), tmartinek@utb.cz (T. Martínek), s_kacerova@utb.cz (S. Káčerová), vkasparova@utb.cz (V. Kašpárková), humpolicek@utb.cz (P. Humpolíček). | |
utb.fulltext.dates | Received 6 April 2022 Revised 5 October 2022 Accepted 19 October 2022 Available online 20 October 2022 | |
utb.fulltext.references | [1] G. Matula, A. Szatkowska, K. Matus, B. Tomiczek, M. Pawlyta, Structure and properties of Co-Cr-Mo alloy manufactured by powder injection molding method, Materials 14 (8) (Apr. 2021) 2010, https://doi.org/10.3390/ma14082010. [2] D. Zhao et al., Surface topography and cytocompatibility of metal injection molded Ti–22Nb alloy as biomaterial, Trans. Nonferrous Metals Soc. China 28 (7) (Jul. 2018) 1342–1350, https://doi.org/10.1016/S1003-6326(18)64772-7 [3] M. Rahmati, M. Mozafari, Biocompatibility of alumina-based biomaterials–a review, J. Cell Physiol. 234 (4) (Apr. 2019) 3321–3335, https://doi.org/10.1002/jcp.27292. [4] D.F. Heaney, J.D. Gurosik, C. Binet, Isotropic forming of porous structures via metal injection molding, J. Mater. Sci. 40 (4) (Feb. 2005) 973–981, https://doi.org/10.1007/s10853-005-6516-1. [5] Y. Arteshi, A. Aghanejad, S. Davaran, Y. Omidi, Biocompatible and electroconductive polyaniline-based biomaterials for electrical stimulation, Eur. Polym. J. 108 (Nov. 2018) 150–170, https://doi.org/10.1016/j.eurpolymj.2018.08.036. [6] J.L. Hernandez, K.A. Woodrow, Medical Applications of Porous Biomaterials: Features of Porosity and Tissue-Specific Implications for Biocompatibility, Adv Healthcare Materials 11 (9) (May 2022) 2102087, https://doi.org/10.1002/adhm.202102087. [7] M.S. Zafar et al., ‘‘Properties of dental biomaterials”, in Advanced Dental Biomaterials, Elsevier (2019) 7–35, https://doi.org/10.1016/B978-0-08-102476-8.00002-5. [8] A.M.J. Coenen, K.V. Bernaerts, J.A.W. Harings, S. Jockenhoevel, S. Ghazanfari, Elastic materials for tissue engineering applications: Natural, synthetic, and hybrid polymers, Acta. Biomater. 79 (Oct. 2018) 60–82, https://doi.org/10.1016/j.actbio.2018.08.027. [9] P. Bober, P. Humpolíček, J. Pacherník, J. Stejskal, T. Lindfors, Conducting polyaniline based cell culture substrate for embryonic stem cells and embryoid bodies, RSC Adv. 5 (62) (2015) 50328–50335, https://doi.org/10.1039/C5RA07504A. [10] V. Kašpárková et al., Cell-compatible conducting polyaniline films prepared in colloidal dispersion mode, Colloids Surf., B 157 (Sep. 2017) 309–316, https://doi.org/10.1016/j.colsurfb.2017.05.066. [11] D. Jasenská et al., Conducting composite films based on chitosan or sodium hyaluronate. Properties and cytocompatibility with human induced pluripotent stem cells, Carbohydr. Polym. 253 (Feb. 2021), https://doi.org/10.1016/j.carbpol.2020.117244 117244. [12] V. Kašpárková et al., Polyaniline colloids stabilized with bioactive polysaccharides: Non-cytotoxic antibacterial materials, Carbohydr. Polym. 219 (Sep. 2019) 423–430, https://doi.org/10.1016/j.carbpol.2019.05.038. [13] M. Hemshekhar, R.M. Thushara, S. Chandranayaka, L.S. Sherman, K. Kemparaju, K.S. Girish, Emerging roles of hyaluronic acid bioscaffolds in tissue engineering and regenerative medicine, Int. J. Biol. Macromol. 86 (May 2016) 917–928, https://doi.org/10.1016/j.ijbiomac.2016.02.032. [14] F. Croisier, C. Jérôme, Chitosan-based biomaterials for tissue engineering, Eur. Polym. J. 49 (4) (Apr. 2013) 780–792, https://doi.org/10.1016/j.eurpolymj.2012.12.009. [15] J. Sun, H. Tan, Alginate-Based Biomaterials for Regenerative Medicine Applications, Materials 6 (4) (Mar. 2013) 1285–1309, https://doi.org/10.3390/ma6041285. [16] H.Ö. Gülsoy, R.M. German, Production of micro-porous austenitic stainless steel by powder injection molding, Scr. Mater. 58 (4) (Feb. 2008) 295–298, https://doi.org/10.1016/j.scriptamat.2007.10.004. [17] K. Nishiyabu, S. Matsuzaki, S. Tanaka, Net-Shape Manufacturing of Micro Porous Metal Components by Powder Injection Molding, MSF 534–536 (Jan. 2007) 981–984, https://doi.org/10.4028/www.scientific.net/MSF.534-536.981. [18] G. Engin, B. Aydemir, H.Ö. Gülsoy, Injection molding of micro-porous titanium alloy with space holder technique, Rare Met. 30 (6) (Dec. 2011) 565–571, https://doi.org/10.1007/s12598-011-0430-2. [19] L. Leppik et al., Combining electrical stimulation and tissue engineering to treat large bone defects in a rat model, Sci. Rep. 8 (1) (Dec. 2018) 6307, https://doi.org/10.1038/s41598-018-24892-0. [20] M.B. Asparuhova, V. Chappuis, A. Stähli, D. Buser, A. Sculean, Role of hyaluronan in regulating self-renewal and osteogenic differentiation of mesenchymal stromal cells and pre-osteoblasts, Clin. Oral. Invest. 24 (11) (Nov. 2020) 3923–3937, https://doi.org/10.1007/s00784-020-03259-8. [21] D.T. Dixon, C.T. Gomillion, Conductive Scaffolds for Bone Tissue Engineering: Current State and Future Outlook, JFB 13 (1) (Dec. 2021) 1, https://doi.org/10.3390/jfb13010001. [22] K. Ronaldson-Bouchard et al., Advanced maturation of human cardiac tissue grown from pluripotent stem cells, Nature 556 (7700) (Apr. 2018) 239–243, https://doi.org/10.1038/s41586-018-0016-3. [23] Z. Zhao et al., Optimization of Electrical Stimulation for Safe and Effective Guidance of Human Cells, Bioelectricity 2 (4) (Dec. 2020) 372–381, https://doi.org/10.1089/bioe.2020.0019. [24] C.M. Murphy, M.G. Haugh, F.J. O’Brien, The effect of mean pore size on cell attachment, proliferation and migration in collagen–glycosaminoglycan scaffolds for bone tissue engineering, Biomaterials 31 (3) (Jan. 2010) 461–466, https://doi.org/10.1016/j.biomaterials.2009.09.063. [25] C. Kleinhans et al., A perfusion bioreactor system efficiently generates cell-loaded bone substitute materials for addressing critical size bone defects, Biotechnol. J. 10 (11) (Sep. 2015) 1727–1738, https://doi.org/10.1002/biot.201400813. [26] C. Chen, X. Bai, Y. Ding, I.-S. Lee, Electrical stimulation as a novel tool for regulating cell behavior in tissue engineering, Biomater. Res. 23 (1) (Dec. 2019) 25, https://doi.org/10.1186/s40824-019-0176-8. [27] J. Hansmann, F. Groeber, A. Kahlig, C. Kleinhans, H. Walles, Bioreactors in tissue engineering-principles, applications and commercial constraints, Biotechnol. J. 8 (3) (Mar. 2013) 298–307, https://doi.org/10.1002/biot.201200162. | |
utb.fulltext.sponsorship | The work was supported within the project OP RDE Junior Grants of TBU in Zlin, Reg. No. CZ.02.2.69/0.0/0.0/19_073/0016941 (JUNG-2020-001), Czech Science Foundation (20-28732S) and Ministry of Education, Youth and Sports of the Czech Republic – DKRVO (RP/CPS/2022/001 and RP/CPS/2022/003). | |
utb.wos.affiliation | [Martinkova, Martina; Hausnerova, Berenika; Kacerova, Simona; Kasparkova, Vera; Humpolicek, Petr] Tomas Bata Univ Zlin, Ctr Polymer Syst, Tr Tomase Bati 5678, Zlin 76001, Czech Republic; [Hausnerova, Berenika; Huba, Jakub; Kasparkova, Vera; Humpolicek, Petr] Tomas Bata Univ Zlin, Fac Technol, Vavreckova 275, Zlin 76001, Czech Republic; [Martinek, Tomas] Tomas Bata Univ Zlin, Fac Appl Informat, Nad Stranemi 4511, Zlin 76005, Czech Republic | |
utb.scopus.affiliation | Tomas Bata University in Zlin, Centre of Polymer Systems, tr. Tomase Bati 5678, Zlin, 76001, Czech Republic; Tomas Bata University in Zlin, Faculty of Technology, Vavreckova, 275, Zlin, 76001, Czech Republic; Tomas Bata University in Zlin, Faculty of Applied Informatics, Nad Stranemi, 4511, Zlin, 76005, Czech Republic | |
utb.fulltext.projects | CZ.02.2.69/0.0/0.0/19_073/0016941 (JUNG-2020-001) | |
utb.fulltext.projects | GAČR 20-28732S | |
utb.fulltext.projects | RP/CPS/2022/001 | |
utb.fulltext.projects | RP/CPS/2022/003 | |
utb.fulltext.faculty | University Institute | |
utb.fulltext.faculty | University Institute | |
utb.fulltext.faculty | Faculty of Technology | |
utb.fulltext.faculty | Faculty of Technology | |
utb.fulltext.faculty | Faculty of Applied Informatics | |
utb.fulltext.faculty | University Institute | |
utb.fulltext.faculty | University Institute | |
utb.fulltext.faculty | Faculty of Technology | |
utb.fulltext.faculty | University Institute | |
utb.fulltext.faculty | Faculty of Technology | |
utb.fulltext.ou | Centre of Polymer Systems | |
utb.fulltext.ou | Centre of Polymer Systems |