Publikace UTB
Repozitář publikační činnosti UTB

Antibacterial porous systems based on polylactide loaded with amikacin

Repozitář DSpace/Manakin

Zobrazit minimální záznam


dc.title Antibacterial porous systems based on polylactide loaded with amikacin en
dc.contributor.author Glinka, Marta
dc.contributor.author Filatova, Kateryna
dc.contributor.author Kucińska-Lipka, Justyna
dc.contributor.author Šopík, Tomáš
dc.contributor.author Domincová Bergerová, Eva
dc.contributor.author Mikulcová, Veronika
dc.contributor.author Wasik, Andrzej
dc.contributor.author Sedlařík, Vladimír
dc.relation.ispartof Molecules
dc.identifier.issn 1420-3049 Scopus Sources, Sherpa/RoMEO, JCR
dc.date.issued 2022
utb.relation.volume 27
utb.relation.issue 20
dc.type article
dc.language.iso en
dc.publisher MDPI
dc.identifier.doi 10.3390/molecules27207045
dc.relation.uri https://www.mdpi.com/1420-3049/27/20/7045
dc.relation.uri https://www.mdpi.com/1420-3049/27/20/7045/pdf?version=1666170787
dc.subject poly(lactic acid) en
dc.subject amikacin en
dc.subject drug delivery systems en
dc.subject porous matrices en
dc.subject tissue engineering en
dc.description.abstract Three porous matrices based on poly(lactic acid) are proposed herein for the controlled release of amikacin. The materials were fabricated by the method of spraying a surface liquid. Description is given as to the possibility of employing a modifier, such as a silica nanocarrier, for prolonging the release of amikacin, in addition to using chitosan to improve the properties of the materials, e.g., stability and sorption capacity. Depending on their actual composition, the materials exhibited varied efficacy for drug loading, as follows: 25.4 ± 2.2 μg/mg (matrices with 0.05% w/v of chitosan), 93 ± 13 μg/mg (with 0.08% w/v SiO2 amikacin modified nanoparticles), and 96 ± 34 μg/mg (matrices without functional additives). An in vitro study confirmed extended release of the drug (amikacin, over 60 days), carried out in accordance with the mathematical Kosmyer–Pepas model for all the materials tested. The matrices were also evaluated for their effectiveness in inhibiting the growth of bacteria such as Staphylococcus aureus, Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa. Concurrent research was conducted on the transdermal absorption, morphology, elemental composition, and thermogravimetric properties of the released drug. en
utb.faculty University Institute
dc.identifier.uri http://hdl.handle.net/10563/1011205
utb.identifier.obdid 43884257
utb.identifier.scopus 2-s2.0-85140908933
utb.identifier.wok 000873039400001
utb.identifier.pubmed 36296639
utb.identifier.coden MOLEF
utb.source j-scopus
dc.date.accessioned 2022-11-29T07:49:19Z
dc.date.available 2022-11-29T07:49:19Z
dc.description.sponsorship Ministerstvo Školství, Mládeže a Tělovýchovy, MŠMT: RP/CPS/2022/002; Politechnika Gdańska, GUT
dc.description.sponsorship Ministry of Education, Youth, and Sports of the Czech Republic [RP/CPS/2022/002]
dc.rights Attribution 4.0 International
dc.rights.uri https://creativecommons.org/licenses/by/4.0/
dc.rights.access openAccess
utb.ou Centre of Polymer Systems
utb.contributor.internalauthor Filatova, Kateryna
utb.contributor.internalauthor Šopík, Tomáš
utb.contributor.internalauthor Domincová Bergerová, Eva
utb.contributor.internalauthor Mikulcová, Veronika
utb.contributor.internalauthor Sedlařík, Vladimír
utb.fulltext.affiliation Marta Glinka 1, Katerina Filatova 2, Justyna Kucińska-Lipka 3, Tomáš Šopík 2, Eva Domincová Bergerová 2, Veronika Mikulcová 2, Andrzej Wasik 1,* and Vladimir Sedlařík 2 1 Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, 11/12 G. Narutowicza Street, 80-233 Gdańsk, Poland 2 Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín, Tomáše Bati 5678 Street, 760 01 Zlín, Czech Republic 3 Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, 11/12 G. Narutowicza Street, 80-233 Gdańsk, Poland * Correspondence: wasia@pg.edu.pl
utb.fulltext.dates Received: 14 September 2022 Revised: 14 October 2022 Accepted: 16 October 2022 Published: 19 October 2022
utb.fulltext.references 1. Macha, I.J.; Muna, M.M.; Magere, J.L. In vitro study and characterization of cotton fabric PLA composite as a slow antibiotic delivery device for biomedical applications. J. Drug Deliv. Sci. Technol. 2018, 43, 172–177. [Google Scholar] [CrossRef] 2. Saghazadeh, S.; Rinoldi, C.; Schot, M.; Kashaf, S.S.; Sharifi, F.; Jalilian, E.; Nuutila, K.; Giatsidis, G.; Mostafalu, P.; Derakhshandeh, H.; et al. Drug delivery systems and materials for wound healing applications. Adv. Drug Deliv. Rev. 2018, 127, 138–166. [Google Scholar] [CrossRef] [PubMed] 3. Zhang, L.; Tai, Y.; Liu, X.; Liu, Y.; Dong, Y.; Liu, Y.; Yang, C.; Kong, D.; Qi, C.; Wang, S.; et al. Natural polymeric and peptide-loaded composite wound dressings for scar prevention. Appl. Mater. Today 2021, 25, 101186. [Google Scholar] [CrossRef] 4. Alven, S.; Aderibigbe, B.A. Hyaluronic acid-based scaffolds as potential bioactive wound dressings. Polymers 2021, 13, 2102. [Google Scholar] [CrossRef] [PubMed] 5. Bialik-Wąs, K.; Pluta, K.; Malina, D.; Barczewski, M.; Malarz, K.; Mrozek-Wilczkiewicz, A. Advanced SA/PVA-based hydrogel matrices with prolonged release of Aloe vera as promising wound dressings. Mater. Sci. Eng. C 2021, 120. [Google Scholar] [CrossRef] 6. Liu, H.; Wang, C.; Li, C.; Qin, Y.; Wang, Z.; Yang, F.; Li, Z.; Wang, J. A functional chiosan-based hydrogel as a wound dressing and drug delivery system in the treatment of wound healing. R. Soc. Chem. 2018, 8, 7533–7549. [Google Scholar] [CrossRef] 7. Iqbal, N.; Khan, A.S.; Asif, A.; Yar, M.; Haycock, J.W.; Rehman, I.U. Recent concepts in biodegradable polymers for tissue engineering paradigms: A critical review. Int. Mater. Rev. 2019, 64, 91–126. [Google Scholar] [CrossRef] 8. Tyler, B.; Gullotti, D.; Mangraviti, A.; Utsuki, T.; Brem, H. Polylactic acid (PLA) controlled delivery carriers for biomedical applications. Adv. Drug Deliv. Rev. 2016, 107, 163–175. [Google Scholar] [CrossRef] 9. Santoro, M.; Shah, S.R.; Walker, J.L.; Mikos, A.G. Poly(lactic acid) nanofibrous scaffolds for tissue engineering. Adv. Drug Deliv. Rev. 2016, 107, 206–212. [Google Scholar] [CrossRef] 10. Abdal-Hay, A.; Hussein, K.H.; Casettari, L.; Khalil, K.A.; Hamdy, A.S. Fabrication of novel high performance ductile poly(lactic acid) nanofiber scaffold coated with poly(vinyl alcohol) for tissue engineering applications. Mater. Sci. Eng. C 2016, 60, 143–150. [Google Scholar] [CrossRef] 11. Wang, L.; Wang, D.; Zhou, Y.; Zhang, Y.; Li, Q.; Shen, C. Fabrication of open-porous PCL/PLA tissue engineering scaffolds and the relationship of foaming process, morphology, and mechanical behavior. Polym. Adv. Technol. 2019, 30, 2539–2548. [Google Scholar] [CrossRef] 12. Abu Ghalia, M.; Dahman, Y. Fabrication and enhanced mechanical properties of porous PLA/PEG copolymer reinforced with bacterial cellulose nanofibers for soft tissue engineering applications. Polym. Test. 2017, 61, 114–131. [Google Scholar] [CrossRef] 13. Bi, H.; Feng, T.; Li, B.; Han, Y. In vitro and in vivo comparison study of electrospun PLA and PLA/PVA/SA fiber membranes for wound healing. Polymers 2020, 12, 839. [Google Scholar] [CrossRef] 14. Moghaddam, M.A.; Di Martino, A.; Šopík, T.; Fei, H.; Císař, J.; Pummerová, M.; Sedlařík, V. Polylactide/polyvinylalcohol-based porous bioscaffold loaded with gentamicin for wound dressing applications. Polymers 2021, 13, 921. [Google Scholar] [CrossRef] 15. Glinka, M.; Filatova, K.; Kucińska-Lipka, J.; Bergerova, E.D.; Wasik, A.; Sedlařík, V. Encapsulation of Amikacin into Microparticles Based on Low-Molecular-Weight Poly(lactic acid) and Poly(lactic acid- co-polyethylene glycol). Mol. Pharm. 2021, 18, 2986–2996. [Google Scholar] [CrossRef] 16. Chen, G.; Ushida, T.; Tateishi, T. Development of biodegradable porous scaffolds for tissue engineering. Mater. Sci. Eng. C 2001, 17, 63–69. [Google Scholar] [CrossRef] 17. Koosehgol, S.; Ebrahimian-Hosseinabadi, M.; Alizadeh, M.; Zamanian, A. Preparation and characterization of in situ chitosan/polyethylene glycol fumarate/thymol hydrogel as an effective wound dressing. Mater. Sci. Eng. C 2017, 79, 66–75. [Google Scholar] [CrossRef] [PubMed] 18. Bayrakci, M.; Keskinates, M.; Yilmaz, B. Antibacterial, thermal decomposition and in vitro time release studies of chloramphenicol from novel PLA and PVA nanofiber mats. Mater. Sci. Eng. C 2021, 122, 111895. [Google Scholar] [CrossRef] 19. Hajikhani, M.; Emam-Djomeh, Z.; Askari, G. Fabrication and characterization of mucoadhesive bioplastic patch via coaxial polylactic acid (PLA) based electrospun nanofibers with antimicrobial and wound healing application. Int. J. Biol. Macromol. 2021, 172, 143–153. [Google Scholar] [CrossRef] 20. Ramirez, M.S.; Tolmasky, M.E. Amikacin: Uses, resistance, and prospects for inhibition. Molecules 2017, 22, 2267. [Google Scholar] [CrossRef] 21. European Medicines Agency. Reflection Paper on Use of Aminoglycosides in Animals in the European Union: Development of Resistance and Impact on Human and Animal Health; European Medicines Agency: Amsterdam, The Netherlands, 2017; Volume 44, pp. 1–42. 22. Krause, K.M.; Serio, A.W.; Kane, T.R.; Connolly, L.E. Aminoglycosides: An Overview. Cold Spring Harb. Perspect. Med. 2016, 6, a027029. [Google Scholar] [CrossRef] [PubMed] 23. Duszynska, W.; Taccone, F.S.; Hurkacz, M.; Kowalska-Krochmal, B.; Wiela-Hojeńska, A.; Kübler, A. Therapeutic drug monitoring of amikacin in septic patients. Crit. Care 2013, 17, cc12844. [Google Scholar] [CrossRef] [PubMed] 24. Ristuccia, A.M.; Cunha, B.A. An overview of amikacin. Ther. Drug Monit. 1985, 7, 12–25. [Google Scholar] [CrossRef] 25. Price, J.S.; Tencer, A.F.; Arm, D.M.; Bohach, G.A. Controlled release of antibiotics from coated orthopedic implants. J. Biomed. Mater. Res. 1996, 30, 281–286. [Google Scholar] [CrossRef] 26. Brooks, B.D.; Sinclair, K.D.; Davidoff, S.N.; Lawson, S.; Williams, A.G.; Coats, B.; Grainger, D.W.; Brooks, A.E. Molded polymer-coated composite bone void filler improves tobramycin controlled release kinetics. J. Biomed. Mater. Res. Part B Appl. Biomater. 2014, 102, 1074–1083. [Google Scholar] [CrossRef] [PubMed] 27. López-Calderón, H.D.; Avilés-Arnaut, H.; Galán Wong, L.J.; Almaguer-Cantú, V.; Laguna-Camacho, J.R.; Calderón-Ramón, C.; Escalante-Martínez, J.E.; Arévalo-Niño, K. Cellulose Acetate Bi-Layer Scaffold Loaded with Gentamicin as Possible Wound Dressing. Polymers 2020, 12, 2311. [Google Scholar] [CrossRef] [PubMed] 28. Merlusca, I.P.; Matiut, D.S.; Lisa, G.; Silion, M.; Gradinaru, L.; Oprea, S.; Popa, I.M. Preparation and characterization of chitosan–poly(vinyl alcohol)–neomycin sulfate films. Polym. Bull. 2018, 75, 3971–3986. [Google Scholar] [CrossRef] 29. Nitanan, T.; Akkaramongkolporn, P.; Rojanarata, T.; Ngawhirunpat, T.; Opanasopit, P. Neomycin-loaded poly(styrene sulfonic acid-co-maleic acid) (PSSA-MA)/polyvinyl alcohol (PVA) ion exchange nanofibers for wound dressing materials. Int. J. Pharm. 2013, 448, 71–78. [Google Scholar] [CrossRef] 30. Bakhsheshi-Rad, H.R.; Hadisi, Z.; Ismail, A.F.; Aziz, M.; Akbari, M.; Berto, F.; Chen, X.B. In vitro and in vivo evaluation of chitosan-alginate/gentamicin wound dressing nanofibrous with high antibacterial performance. Polym. Test. 2020, 82, 106298. [Google Scholar] [CrossRef] 31. Noel, S.P.; Courtney, H.S.; Bumgardner, J.D.; Haggard, W.O. Chitosan sponges to locally deliver amikacin and vancomycin: A pilot in vitro evaluation. Clin. Orthop. Relat. Res. 2010, 468, 2074–2080. [Google Scholar] [CrossRef] 32. Abbasi, A.R.; Sohail, M.; Minhas, M.U.; Khaliq, T.; Kousar, M.; Khan, S.; Hussain, Z.; Munir, A. Bioinspired sodium alginate based thermosensitive hydrogel membranes for accelerated wound healing. Int. J. Biol. Macromol. 2020, 155, 751–765. [Google Scholar] [CrossRef] [PubMed] 33. Singh, B.; Singh, J. Rajneesh Application of tragacanth gum and alginate in hydrogel wound dressing’s formation using gamma radiation. Carbohydr. Polym. Technol. Appl. 2021, 2, 100058. [Google Scholar] [CrossRef] 34. Prabu, P.; Dharmaraj, N.; Aryal, S.; Lee, B.M.; Ramesh, V.; Kim, H.Y. Preparation and drug release activity of scaffolds containing collagen and poly(caprolactone). J. Biomed. Mater. Res. Part A 2006, 79, 963–973. [Google Scholar] [CrossRef] 35. Natarajan, S.K.; Selvaraj, S. Mesoporous silica nanoparticles: Importance of surface modifications and its role in drug delivery. RSC Adv. 2014, 4, 14328–14334. [Google Scholar] [CrossRef] 36. Nastase, S.; Bajenaru, L.; Matei, C.; Mitran, R.A.; Berger, D. Ordered mesoporous silica and aluminosilicate-type matrix for amikacin delivery systems. Microporous Mesoporous Mater. 2013, 182, 32–39. [Google Scholar] [CrossRef] 37. Matica, M.A.; Aachmann, F.L.; Tøndervik, A.; Sletta, H.; Ostafe, V. Chitosan as a wound dressing starting material: Antimicrobial properties and mode of action. Int. J. Mol. Sci. 2019, 20, 5889. [Google Scholar] [CrossRef] 38. Kmetty, Á.; Litauszki, K. Development of poly (lactide acid) foams with thermally expandable microspheres. Polymers 2020, 12, 463. [Google Scholar] [CrossRef] 39. Gieldowska, M.; Puchalski, M.; Szparaga, G.; Krucińska, I. Investigation of the influence of PLA molecular and supramolecular structure on the kinetics of thermal-supported hydrolytic degradation of wet spinning fibres. Materials 2020, 13, 2111. [Google Scholar] [CrossRef] 40. Bakshi, P.S.; Selvakumar, D.; Kadirvelu, K.; Kumar, N.S. Chitosan as an environment friendly biomaterial—A review on recent modifications and applications. Int. J. Biol. Macromol. 2020, 150, 1072–1083. [Google Scholar] [CrossRef] 41. Menazea, A.A.; Ismail, A.M.; Awwad, N.S.; Ibrahium, H.A. Physical characterization and antibacterial activity of PVA/Chitosan matrix doped by selenium nanoparticles prepared via one-pot laser ablation route. J. Mater. Res. Technol. 2020, 9, 9598–9606. [Google Scholar] [CrossRef] 42. Sogias, I.A.; Khutoryanskiy, V.V.; Williams, A.C. Exploring the factors affecting the solubility of chitosan in water. Macromol. Chem. Phys. 2010, 211, 426–433. [Google Scholar] [CrossRef] 43. Bonilla, J.; Fortunati, E.; Vargas, M.; Chiralt, A.; Kenny, J.M. Effects of chitosan on the physicochemical and antimicrobial properties of PLA films. J. Food Eng. 2013, 119, 236–243. [Google Scholar] [CrossRef] 44. Chen, C.; Liu, L.; Huang, T.; Wang, Q.; Fang, Y. Bubble template fabrication of chitosan/poly(vinyl alcohol) sponges for wound dressing applications. Int. J. Biol. Macromol. 2013, 62, 188–193. [Google Scholar] [CrossRef] [PubMed] 45. Li, F.J.; Zhang, S.D.; Liang, J.Z.; Wang, J.Z. Effect of polyethylene glycol on the crystallization and impact properties of polylactide-based blends. Polym. Adv. Technol. 2015, 26, 465–475. [Google Scholar] [CrossRef] 46. Mitran, R.-A.; Deaconu, M.; Matei, C.; Berger, D. Mesoporous Silica as Carrier for Drug-Delivery Systems; Elsevier Inc.: Amsterdam, The Netherlands, 2019; ISBN 9780128140338. [Google Scholar] 47. Berger, D.; Bajenaru, L.; Nastase, S.; Mitran, R.A.; Munteanu, C.; Matei, C. Influence of structural, textural and surface properties of mesostructured silica and aluminosilicate carriers on aminoglycoside uptake and in vitro delivery. Microporous Mesoporous Mater. 2015, 206, 150–160. [Google Scholar] [CrossRef] 48. Ovalles, J.F.; Gallignani, M.; Brunetto, M.R.; Rondón, R.A.; Ayala, C. Reagent-free determination of amikacin content in amikacin sulfate injections by FTIR derivative spectroscopy in a continuous flow system. J. Pharm. Anal. 2014, 4, 125–131. [Google Scholar] [CrossRef] 49. Ferro, L.; Gojkovic, Z.; Funk, C. Statistical Methods for Rapid Quantification of Proteins, Lipids, and Carbohydrates in Nordic. Molecules 2019, 24, 3237. [Google Scholar] [CrossRef] 50. Grumezescu, V.; Socol, G.; Grumezescu, A.M.; Holban, A.M.; Ficai, A.; Truşcǎ, R.; Bleotu, C.; Balaure, P.C.; Cristescu, R.; Chifiriuc, M.C. Functionalized antibiofilm thin coatings based on PLA-PVA microspheres loaded with usnic acid natural compounds fabricated by MAPLE. Appl. Surf. Sci. 2014, 302, 262–267. [Google Scholar] [CrossRef] 51. Chieng, B.W.; Ibrahim, N.A.; Yunus, W.M.Z.W.; Hussein, M.Z. Poly(lactic acid)/poly(ethylene glycol) polymer nanocomposites: Effects of graphene nanoplatelets. Polymers 2014, 6, 93–104. [Google Scholar] [CrossRef] 52. Lai, S.M.; Hsieh, Y.T. Preparation and Properties of Polylactic Acid (PLA)/Silica Nanocomposites. J. Macromol. Sci. Part B Phys. 2016, 55, 211–228. [Google Scholar] [CrossRef] 53. Tang, F.; Li, L.; Chen, D. Mesoporous silica nanoparticles: Synthesis, biocompatibility and drug delivery. Adv. Mater. 2012, 24, 1504–1534. [Google Scholar] [CrossRef] [PubMed] 54. Hashemikia, S.; Hemmatinejad, N.; Ahmadi, E.; Montazer, M. A novel cotton fabric with anti-bacterial and drug delivery properties using SBA-15-NH2/polysiloxane hybrid containing tetracycline. Mater. Sci. Eng. C 2016, 59, 429–437. [Google Scholar] [CrossRef] [PubMed] 55. Pawar, V.; Bulbake, U.; Khan, W.; Srivastava, R. Chitosan sponges as a sustained release carrier system for the prophylaxis of orthopedic implant-associated infections. Int. J. Biol. Macromol. 2019, 134, 100–112. [Google Scholar] [CrossRef] [PubMed] 56. Gomaa, S.F.; Madkour, T.M.; Moghannem, S.; El-Sherbiny, I.M. New polylactic acid/cellulose acetate-based antimicrobial interactive single dose nanofibrous wound dressing mats. Int. J. Biol. Macromol. 2017, 105, 1148–1160. [Google Scholar] [CrossRef] [PubMed] 57. Cui, S.; Sun, X.; Li, K.; Gou, D.; Zhou, Y.; Hu, J.; Liu, Y. Polylactide nanofibers delivering doxycycline for chronic wound treatment. Mater. Sci. Eng. C 2019, 104. [Google Scholar] [CrossRef] 58. Seo, K.H.; Lee, K.E.; Yanilmaz, M.; Kim, J. Exploring the Diverse Morphology of Porous Poly(Lactic Acid) Fibers for Developing Long-Term Controlled Antibiotic Delivery Systems. Pharmaceutics 2022, 14, 1272. [Google Scholar] [CrossRef] 59. Chang, H.I.; Perrie, Y.; Coombes, A.G.A. Delivery of the antibiotic gentamicin sulphate from precipitation cast matrices of polycaprolactone. J. Control. Release 2006, 110, 414–421. [Google Scholar] [CrossRef] 60. Posadowska, U.; Brzychczy-Włoch, M.; Pamuła, E. Gentamicin loaded PLGA nanoparticles as local drug delivery system for the osteomyelitis treatment. Acta Bioeng. Biomech. 2015, 17, 41–47. [Google Scholar] [CrossRef] 61. Sabaeifard, P.; Abdi-Ali, A.; Soudi, M.R.; Gamazo, C.; Irache, J.M. Amikacin loaded PLGA nanoparticles against Pseudomonas aeruginosa. Eur. J. Pharm. Sci. 2016, 93, 392–398. [Google Scholar] [CrossRef] 62. Vimala, K.; Mohan, Y.M.; Sivudu, K.S.; Varaprasad, K.; Ravindra, S.; Reddy, N.N.; Padma, Y.; Sreedhar, B.; MohanaRaju, K. Fabrication of porous chitosan films impregnated with silver nanoparticles: A facile approach for superior antibacterial application. Colloids Surf. B Biointerfaces 2010, 76, 248–258. [Google Scholar] [CrossRef] 63. Pillai, C.K.S.; Paul, W.; Sharma, C.P. Chitin and chitosan polymers: Chemistry, solubility and fiber formation. Prog. Polym. Sci. 2009, 34, 641–678. [Google Scholar] [CrossRef] 64. Lewandowska, K. Effect of an ionic liquid on the physicochemical properties of chitosan/poly(vinyl alcohol) mixtures. Int. J. Biol. Macromol. 2020, 147, 1156–1163. [Google Scholar] [CrossRef] [PubMed] 65. Lewandowska, K. Miscibility and thermal stability of poly(vinyl alcohol)/chitosan mixtures. Thermochim. Acta 2009, 493, 42–48. [Google Scholar] [CrossRef] 66. Wang, N.; Yu, J.; Ma, X. Preparation and characterization of thermoplastic starch/PLA blends by one-step reactive extrusion. Polym. Int. 2007, 56, 1140–1447. [Google Scholar] [CrossRef] 67. Acosta-Ferreira, S.; Castillo, O.S.; Madera-Santana, J.T.; Mendoza-García, D.A.; Núñez-Colín, C.A.; Grijalva-Verdugo, C.; Villa-Lerma, A.G.; Morales-Vargas, A.T.; Rodríguez-Núñez, J.R. Production and physicochemical characterization of chitosan for the harvesting of wild microalgae consortia. Biotechnol. Rep. 2020, 28, 554. [Google Scholar] [CrossRef] 68. Nicoli, S.; Santi, P. Transdermal delivery of aminoglycosides: Amikacin transport and iontophoretic non-invasive monitoring. J. Control. Release 2006, 111, 89–94. [Google Scholar] [CrossRef] 69. Pandey, H.; Parashar, V.; Parashar, R.; Prakash, R.; Ramteke, P.W.; Pandey, A.C. Controlled drug release characteristics and enhanced antibacterial effect of graphene nanosheets containing gentamicin sulfate. Nanoscale 2011, 3, 4104–4108. [Google Scholar] [CrossRef]
utb.fulltext.sponsorship This research was funded by the Ministry of Education, Youth, and Sports of the Czech Republic: Grant No. RP/CPS/2022/002.
utb.wos.affiliation [Glinka, Marta; Wasik, Andrzej] Gdansk Univ Technol, Fac Chem, Dept Analyt Chem, 11-12 G Narutowicza St, PL-80233 Gdansk, Poland; [Filatova, Katerina; Sopik, Tomas; Bergerova, Eva Domincova; Mikulcova, Veronika; Sedlarik, Vladimir] Tomas Bata Univ Zlin, Univ Inst, Ctr Polymer Syst, Tomase Bati 5678 St, Zlin 76001, Czech Republic; [Kucinska-Lipka, Justyna] Gdansk Univ Technol, Fac Chem, Dept Polymer Technol, 11-12 G Narutowicza St, PL-80233 Gdansk, Poland
utb.scopus.affiliation Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, 11/12 G. Narutowicza Street, Gdańsk, 80-233, Poland; Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín, Tomáše Bati 5678 Street, Zlín, 760 01, Czech Republic; Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, 11/12 G. Narutowicza Street, Gdańsk, 80-233, Poland
utb.fulltext.projects RP/CPS/2022/002
utb.fulltext.faculty University Institute
utb.fulltext.faculty University Institute
utb.fulltext.faculty University Institute
utb.fulltext.faculty University Institute
utb.fulltext.faculty University Institute
utb.fulltext.ou Centre of Polymer Systems
utb.fulltext.ou Centre of Polymer Systems
utb.fulltext.ou Centre of Polymer Systems
utb.fulltext.ou Centre of Polymer Systems
utb.fulltext.ou Centre of Polymer Systems
Find Full text

Soubory tohoto záznamu

Zobrazit minimální záznam

Attribution 4.0 International Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je Attribution 4.0 International