Publikace UTB
Repozitář publikační činnosti UTB

Effect of machining conditions on temperature and Vickers microhardness of chips during planing

Repozitář DSpace/Manakin

Zobrazit minimální záznam


dc.title Effect of machining conditions on temperature and Vickers microhardness of chips during planing en
dc.contributor.author Monka, Peter Pavol
dc.contributor.author Monková, Katarína
dc.contributor.author Vašina, Martin
dc.contributor.author Kubišová, Milena
dc.contributor.author Koroľ, Martin
dc.contributor.author Sekeráková, Adriana
dc.relation.ispartof Metals
dc.identifier.issn 2075-4701 Scopus Sources, Sherpa/RoMEO, JCR
dc.date.issued 2022
utb.relation.volume 12
utb.relation.issue 10
dc.type article
dc.language.iso en
dc.publisher MDPI
dc.identifier.doi 10.3390/met12101605
dc.relation.uri https://www.mdpi.com/2075-4701/12/10/1605
dc.relation.uri https://www.mdpi.com/2075-4701/12/10/1605/pdf?version=1665670594
dc.subject planing en
dc.subject chip en
dc.subject Vickers microhardness en
dc.subject temperature en
dc.subject cutting conditions en
dc.description.abstract For the machining of long and narrow surfaces and when processing multiple pieces, planing technology is used, the productivity of which can be higher than that of milling, although it is relatively slow machining. The article aims to study the degree of influence of the geometry of the tool (the angle of cutting-edge inclination and the angle of the tool-orthogonal rake), as well as the cutting conditions (cutting depth and cutting speed) on the chip characteristics (temperature and microhardness) in orthogonal and oblique slow-rate machining of steel 1.0503 (EN C45). The experiments were carried out on specially prepared workpieces designed for immediate stopping of machining. The results of the experiments were statistically processed, and behavioural models were created for temperature and Vickers microhardness of chips for individual combinations of factors. The obtained dependencies revealed how the geometry of the cutting tool and the cutting conditions affect the temperature and microhardness in the cutting area and at the same time allowed the best conditions for both orthogonal and oblique machining to be set up. en
utb.faculty Faculty of Technology
dc.identifier.uri http://hdl.handle.net/10563/1011208
utb.identifier.obdid 43883979
utb.identifier.scopus 2-s2.0-85140737881
utb.identifier.wok 000873151500001
utb.source j-scopus
dc.date.accessioned 2022-11-29T07:49:19Z
dc.date.available 2022-11-29T07:49:19Z
dc.description.sponsorship Ministerstvo školstva, vedy, výskumu a športu Slovenskej republiky: APVV-19-0550, SK-CN-21-0046; Kultúrna a Edukacná Grantová Agentúra MŠVVaŠ SR, KEGA: 005TUKE-4/2021, 032TUKE-4/2022
dc.description.sponsorship [APVV-19-0550]; [SK-CN-21-0046]; [KEGA 005TUKE4/2021]; [KEGA 032TUKE-4/2022]
dc.rights Attribution 4.0 International
dc.rights.uri https://creativecommons.org/licenses/by/4.0/
dc.rights.access openAccess
utb.contributor.internalauthor Monka, Peter Pavol
utb.contributor.internalauthor Monková, Katarína
utb.contributor.internalauthor Vašina, Martin
utb.contributor.internalauthor Kubišová, Milena
utb.fulltext.affiliation Peter Pavol Monka 1,2, Katarina Monkova 1,2,* , Martin Vasina 2,3 , Milena Kubisova 2, Martin Korol 1 and Adriana Sekerakova 1 1 Faculty of Manufacturing Technologies with the Seat in Presov, Technical University of Kosice, Sturova 31, 080 01 Presov, Slovakia 2 Faculty of Technology, UTB Tomas Bata University in Zlin, Vavreckova 5669, 760 01 Zlin, Czech Republic 3 Faculty of Mechanical Engineering, VŠB-Technical University of Ostrava, 17. Listopadu 15/2172, 708 33 Ostrava-Poruba, Czech Republic * Correspondence: katarina.monkova@tuke.sk; Tel.: +421-55-602-6370
utb.fulltext.dates Received: 27 August 2022 Revised: 20 September 2022 Accepted: 21 September 2022 Published: 26 September 2022
utb.fulltext.references 1. Varga, G.; Sovilj, B.; Jakubowicz, M.; Babič, M. Experimental Examination of Surface Roughness in Low-Environmental-Load Machining of External Cylindrical Workpieces. In Advances in Manufacturing II; Lecture Notes in Mechanical Engineering; Springer: Cham, Switzerland, 2019; Volume 2, pp. 307–321. [Google Scholar] [CrossRef] 2. Prasetyo, L.; Tauviqirrahman, M. Study of chip formation feedrates of various steels in low-speed milling process. IOP Conf. Ser. Mater. Sci. Eng. 2017, 202, 012097. [Google Scholar] [CrossRef] 3. Pastucha, P.; Majstorovic, V.; Kucera, M.; Beno, P.; Krile, S. Study of Cutting Tool Durability at a Short-Term Discontinuous Turning Test. In Advances in Manufacturing Engineering and Materials; Lecture Notes in Mechanical Engineering; Springer: Cham, Switzerland, 2019; pp. 493–501. [Google Scholar] [CrossRef] 4. Karkalos, N.E.; Markopoulos, A.P.; Manolakos, D.E. Cutting Speed in Nano-Cutting as MD Modelling Parameter. Int. J. Manuf. Mater. Mech. Eng. 2016, 6, 1–13. [Google Scholar] [CrossRef] 5. Toulfatzis, A.I.; Pantazopoulos, G.A.; Besseris, G.J.; Paipetis, A.S. Machinability evaluation and screening of leaded and lead-free brasses using a non-linear robust multifactorial profiler. Int. J. Adv. Manuf. Technol. 2016, 86, 3241–3254. [Google Scholar] [CrossRef] 6. Neslušan, M.; Mrkvica, I.; Čep, R.; Kozak, D.; Konderla, R. Deformations after heat treatment and their influence on cutting process. Teh. Vjesn. 2011, 18, 601–608. [Google Scholar] 7. Tomczewski, L. The application of planing tools during turning. Adv. Sci. Technol. Res. J. 2015, 9, 83–86. [Google Scholar] [CrossRef] 8. Chukarin, A.; Meskhi, B.; Shoniya, D. Theoretical analysis on regularities of the process of noise generation of planing, slotting and planing-milling machines. Akustika 2021, 41, 173–177. [Google Scholar] [CrossRef] 9. Zetek, M.; Zetkova, I. Increasing of the Cutting Tool Efficiency from Tool Steel by Using Fluidization Method. Procedia Eng. 2015, 100, 912–917. [Google Scholar] [CrossRef] 10. Kundrák, J.; Markopoulos, A.P.; Karkalos, N.E.; Makkai, T. The Examination of Cutting Force as Function of Depth of Cut in Cases with Constant and Changing Chip Cross Section. In Advances in Manufacturing II, Volume 4—Mechanical Engineering; Springer: Cham, Switzerland, 2019; pp. 405–415. [Google Scholar] 11. Saglam, H.; Yaldiz, S.; Unsacar, F. The effect of tool geometry and cutting speed on main cutting force and tool tip temperature. Mater. Des. 2007, 28, 101–111. [Google Scholar] [CrossRef] 12. Jurko, J.; Panda, A.; Behun, M. Prediction of a new form of the cutting tool according to achieve the desired surface quality. Appl. Mech. Mater. 2013, 268–270, 473–476. [Google Scholar] [CrossRef] 13. Filippov, V.; Filippova, E.O. Determination of Cutting Forces in Oblique Cutting. Appl. Mech. Mater. 2015, 756, 659–664. [Google Scholar] [CrossRef] 14. Bagci, E. 3-D numerical analysis of orthogonal cutting process via mesh-free method. Int. J. Phys. Sci. 2011, 6, 1267–1282. [Google Scholar] 15. Filice, L.; Micari, F.; Rizzuti, S.; Umbrello, D. A critical analysis on the friction modeling in orthogonal machining. Int. J. Mach. Tools Manuf. 2007, 47, 709–714. [Google Scholar] [CrossRef] 16. Aydin, M.; Koklu, U. A study of ball-end milling forces by finite element model with Lagrangian boundary of orthogonal cutting operation. J. Fac. Eng. Archit. Gazi Univ. 2018, 33, 507–516. [Google Scholar] 17. Seah, K.H.W.; Rahman, M.; Li, X.P.; Zhang, X.D. A three-dimensional model of chip flow, chip curl and chip breaking for oblique cutting. Int. J. Mach. Tools Manuf. 1996, 36, 1385–1400. [Google Scholar] [CrossRef] 18. Saglam, H.; Unsacar, F.; Yaldiz, S. Investigation of the effect of rake angle and approaching angle on main cut-ting force and tool tip temperature. Int. J. Mach. Tools Manuf. 2006, 46, 132–141. [Google Scholar] [CrossRef] 19. Dewangan, S.; Chattopadhyaya, S.; Hloch, S. Wear Assessment of Conical Pick used in Coal Cutting Operation. Rock Mech. Rock Eng. 2015, 48, 2129–2139. [Google Scholar] [CrossRef] 20. Vukelic, G.; Vizentin, G.; Ivosevic, S.; Bozic, Z. Analysis of prolonged marine exposure on properties of AH36 steel. Eng. Fail. Anal. 2022, 135, 106132. [Google Scholar] [CrossRef] 21. Jain, V.K.; Kumar, S.; Lal, G.K. Effects of Machining Parameters on the Microhardness of Chips. J. Eng. Ind. 1989, 111, 220. [Google Scholar] [CrossRef] 22. Wang, C.; Xie, Y.; Zheng, L.; Qin, Z.; Tang, D.; Song, Y. Research on the Chip Formation Mechanism during the high-speed milling of hardened steel. Int. J. Mach. Tools Manuf. 2014, 79, 31–48. [Google Scholar] [CrossRef] 23. Alrabii, S.A.; Zumot, L.Y. Chip Thickness and Microhardness Prediction Models during Turning of Medium Carbon Steel. J. Appl. Math. 2007, 2017, 051905. [Google Scholar] [CrossRef] 24. Pu, C.L.; Zhu, G.; Yang, S.B.; Yue, E.B.; Subramanian, S.V. Effect of Dynamic Recrystallization at Tool-Chip Interface on Accelerating Tool Wear During High-Speed Cutting of AISI1045 Steel. Int. J. Mach. Tools Manuf. 2016, 100, 72–80. [Google Scholar] [CrossRef] 25. Senussi, G.H. Interaction Effect of Feed Rate and Cutting Speed in CNC-Turning on Chip Micro-Hardness of 304-Austenitic Stainless Steel. World Acad. Sci. Eng. Technol. 2007, 28, 121–126. [Google Scholar] 26. Mabrouki, T.; Courbon, C.; Zhang, Y.; Rech, J.; Nélias, D.; Asad, M.; Hamdi, H.; Belhadi, S.; Salvatore, F. Some insights on the modelling of chip formation and its morphology during metal cutting operations. C. R. Mécanique 2016, 344, 335–350. [Google Scholar] [CrossRef] 27. Umer, U.; Qudeiri, J.A.; Ashfaq, M.; Al-Ahmari, A. Chip morphology predictions while machining hardened tool steel using finite element and smoothed particles hydrodynamics methods. J. Zhejiang Univ. Sci. A 2016, 17, 873–885. [Google Scholar] [CrossRef] 28. Adekunle, A.S.; Adedayo, S.M.; Ohijeagbon, I.O.; Olusegun, H.D. Chip morphology and behaviour of tool temperature during turning of AISI 301 using different biodegradable oils. J. Prod. Eng. 2015, 18, 18–22. [Google Scholar] 29. Bai, W.; Sun, R.; Roy, A.; Silberschmidt, V.V. Improved analytical prediction of chip formation in orthogo-nal cutting of titanium alloy Ti6Al4V. Int. J. Mech. Sci. 2017, 133, 357–367. [Google Scholar] [CrossRef] 30. Karmiris-Obratański, P.; Papazoglou, E.L.; Leszczyńska-Madej, B.; Karkalos, N.E.; Markopoulos, A.P. An Optimalization Study on the Surface Texture and Machining Parameters of 60CrMoV18–5 Steel by EDM. Materials 2022, 15, 3559. [Google Scholar] [CrossRef] 31. Saez-de-Buruaga, M.; Soler, D.; Aristimuño, P.X.; Esnaola, J.A.; Arrazola, P.J. Determining tool/chip temperatures from thermography measurements in metal cutting. Appl. Therm. Eng. 2018, 145, 305–314. [Google Scholar] [CrossRef] 32. Kraišnik, M.; Čep, R.; Kouřil, K.; Baloš, S.; Antić, A.; Milutinović, M. Characterization of Microstructural Damage and Failure Mechanisms in C45E Structural Steel under Compressive Load. Crystals 2022, 12, 426. [Google Scholar] [CrossRef] 33. Monkova, K.; Monka, P.P.; Sekerakova, A.; Tkac, J.; Bednarik, M.; Kovac, J.; Jahnatek, A. Research on Chip Shear Angle and Built-Up Edge of Slow-Rate Machining EN C45 and EN 16MnCr5 Steels. Metals 2019, 9, 956. [Google Scholar] [CrossRef] 34. Abdallah, F.; Abdelwahab, S.A.; Aly, W.I.; Ahmed, I. Influence of cutting factor on the cutting tool temperature and surface roughness of steel C45 during Turning process. Int. J. Eng. Res. Technol. 2019, 7, 1065–1072. [Google Scholar] 35. Puneeth Kumar, N.; Srikantappa, A.S. Temperature and Tool Wear Analysis on Machining of Two Different Composition of C45 Steel. Int. J. Eng. Res. Technol. 2022, 11, 208–211. [Google Scholar] 36. D’Amato, R.; Amato, G.; Ruggiero, A. Adaptive Noise Cancellation-Based Tracking Control for a Flexible Rotor in Lubricated Journal Bearings. In Proceedings of the 23rd International Conference on Mechatronics Technology (ICMT), Fisciano, Italy, 23–26 October 2019. [Google Scholar] 37. Obeng, D.P.; Morrell, S.; Napier-Munn, T.J. Application of central composite rotatable design to modeling the effect of some operating variables on the performance of the three-product cyclone. Int. J. Miner. Process. 2005, 76, 181–192. [Google Scholar] [CrossRef] 38. Davim, J.P.; Silvia, J.; Baptista, A.M. Experimental cutting model of metal matrix composites (MMCs). J. Mater. Process. Technol. 2007, 183, 358–362. [Google Scholar] [CrossRef] 39. Arioli, M.; Gratton, S. Linear regression models, least-squares problems, normal equations, and stopping criteria for the conjugate gradient method. Comput. Phys. Commun. 2012, 183, 2322–2336. [Google Scholar] [CrossRef] 40. Paris, A.S.; Tarcolea, C.; Croitoru, S.M.; Majstorović, V.D. Statistical Study of Parameters in the Process of Orthogonal Cutting Surface Hardness. In Proceedings of the 4th International Conference on the Industry 4.0 Model for Advanced Manufacturing, Industry 4.0 and Internet of Things for Manufacturing (AMP), Belgrade, Serbia, 3–6 June 2019; pp. 68–77. [Google Scholar]
utb.fulltext.sponsorship This research was funded by the grants APVV-19-0550, SK-CN-21-0046, KEGA 005TUKE-4/2021 and KEGA 032TUKE-4/2022.
utb.fulltext.sponsorship The article was prepared thanks to support of the Ministry of Education of the Slovak Republic through the grants APVV-19-0550, SK-CN-21-0046, KEGA 005TUKE-4/2021 and KEGA 032TUKE-4/2022.
utb.wos.affiliation [Monka, Peter Pavol; Monkova, Katarina; Korol, Martin; Sekerakova, Adriana] Tech Univ Kosice, Fac Mfg Technol Seat Presov, Sturova 31, Presov 08001, Slovakia; [Monka, Peter Pavol; Monkova, Katarina; Vasina, Martin; Kubisova, Milena] UTB Tomas Bata Univ Zlin, Fac Technol, Vavreckova 5669, Zlin 76001, Czech Republic; [Vasina, Martin] VSB Tech Univ Ostrava, Fac Mech Engn, 17 Listopadu 15-2172, Ostrava 70833, Czech Republic
utb.scopus.affiliation Faculty of Manufacturing Technologies with the Seat in Presov, Technical University of Kosice, Sturova 31, Presov, 080 01, Slovakia; Faculty of Technology, UTB Tomas Bata University in Zlin, Vavreckova 5669, Zlin, 760 01, Czech Republic; Faculty of Mechanical Engineering, VŠB-Technical University of Ostrava, 17. Listopadu 15/2172, Ostrava-Poruba, 708 33, Czech Republic
utb.fulltext.projects APVV-19-0550
utb.fulltext.projects SK-CN-21-0046
utb.fulltext.projects KEGA 005TUKE-4/2021
utb.fulltext.projects KEGA 032TUKE-4/2022
utb.fulltext.faculty Faculty of Technology
utb.fulltext.faculty Faculty of Technology
utb.fulltext.faculty Faculty of Technology
utb.fulltext.faculty Faculty of Technology
utb.fulltext.ou -
utb.fulltext.ou -
utb.fulltext.ou -
utb.fulltext.ou -
Find Full text

Soubory tohoto záznamu

Zobrazit minimální záznam

Attribution 4.0 International Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je Attribution 4.0 International