Publikace UTB
Repozitář publikační činnosti UTB

Teaching algorithms to develop the algorithmic thinking of informatics students

Repozitář DSpace/Manakin

Zobrazit minimální záznam


dc.title Teaching algorithms to develop the algorithmic thinking of informatics students en
dc.contributor.author Gonda, Dalibor
dc.contributor.author Ďuriš, Viliam
dc.contributor.author Tirpáková, Anna
dc.contributor.author Pavlovičová, Gabriela
dc.relation.ispartof Mathematics
dc.identifier.issn 2227-7390 Scopus Sources, Sherpa/RoMEO, JCR
dc.date.issued 2022
utb.relation.volume 10
utb.relation.issue 20
dc.type article
dc.language.iso en
dc.publisher MDPI
dc.identifier.doi 10.3390/math10203857
dc.relation.uri https://www.mdpi.com/2227-7390/10/20/3857
dc.relation.uri https://www.mdpi.com/2227-7390/10/20/3857/pdf?version=1666088390
dc.subject backtracking en
dc.subject computational thinking en
dc.subject heuristics en
dc.subject knight’s tour problem en
dc.subject learning algorithms en
dc.subject problem solving en
dc.description.abstract Modernization and the ever-increasing trend of introducing modern technologies into various areas of everyday life require school graduates with programming skills. The ability to program is closely related to computational thinking, which is based on algorithmic thinking. It is well known that algorithmic thinking is the ability of students to work with algorithms understood as a systematic description of problem-solving strategies. Algorithms can be considered as a fundamental phenomenon that forms a point of contact between mathematics and informatics. As part of an algorithmic graph theory seminar, we conducted an experiment where we solved the knight's tour problem using the backtracking method to observe the change in students' motivation to learn algorithms at a higher cognitive level. Seventy-four students participated in the experiment. Statistical analysis of the results of the experiment confirmed that the use of the algorithm with decision-making in teaching motivated students to learn algorithms with understanding. en
utb.faculty Faculty of Humanities
dc.identifier.uri http://hdl.handle.net/10563/1011210
utb.identifier.obdid 43884109
utb.identifier.scopus 2-s2.0-85140595074
utb.identifier.wok 000873274800001
utb.source j-scopus
dc.date.accessioned 2022-11-29T07:49:19Z
dc.date.available 2022-11-29T07:49:19Z
dc.description.sponsorship Slovenská Akadémia Vied, SAV; Ministerstvo školstva, vedy, výskumu a športu Slovenskej republiky: KEGA 015UKF-4/2021; Agentúra na Podporu Výskumu a Vývoja, APVV: APVV-14-0446; Vedecká Grantová Agentúra MŠVVaŠ SR a SAV, VEGA: 1/0216/21
dc.description.sponsorship Slovak Research and Development Agency [APVV-14-0446]; Cultural and Educational Grant Agency of the Ministry of Education, Science, Research and Sports of the Slovak Republic [KEGA 015UKF-4/2021]; Scientific Grant Agency of the Ministry of Education, Science, Research and Sports of the Slovak Republic; Slovak Academy of Sciences [VEGA 1/0216/21]; VEGA [1/0216/21]
dc.format.extent 13
dc.rights Attribution 4.0 International
dc.rights.uri https://creativecommons.org/licenses/by/4.0/
dc.rights.access openAccess
utb.ou Department of School Education
utb.contributor.internalauthor Tirpáková, Anna
utb.fulltext.affiliation Dalibor Gonda 1, Viliam Duriš 2,* , Anna Tirpáková 2,3 and Gabriela Pavlovičová 2 1 Department of Mathematical Methods and Operations Research, Faculty of Management Science and Informatics, University of Žilina, Univerzitná 1, 01001 Žilina, Slovakia 2 Department of Mathematics, Faculty of Natural Sciences, Constantine The Philosopher University in Nitra, Tr. A. Hlinku 1, 94901 Nitra, Slovakia 3 Department of School Education, Faculty of Humanities, Tomas Bata University in Zlín, Štefánikova 5670, 760 00 Zlín, Czech Republic * Correspondence: vduris@ukf.sk; Tel.: +421-37-6408-708
utb.fulltext.dates Received: 7 October 2022 Revised: 15 October 2022 Accepted: 17 October 2022 Published: 18 October 2022
utb.fulltext.references 1. Türker, P.M.; Pala, F.K. The effect of algorithm education on students’ computer programming self-efficacy perceptions and computational thinking skills. Int. J. Comput. Sci. Educ. Sch. 2020, 3, 19–32. [Google Scholar] 2. Ching, Y.H.; Hsu, Y.C.; Baldwin, S. Developing computational thinking with educational technologies for young learners. Tech. Trends 2018, 62, 563–573. [Google Scholar] [CrossRef] 3. International Society for Technology in Education-ISTE. Computational Thinking for All. Available online: https://www.iste.org/explore/articleDetail?articleid=152 (accessed on 23 August 2021). 4. Chondrogiannis, E.; Symeonaki, E.; Papachristos, D.; Loukatos, D.; Arvanitis, K.G. Computational Thinking and STEM in Agriculture Vocational Training: A Case Study in a Greek Vocational Education Institution. Eur. J. Investig. Health Psychol. Educ. 2021, 11, 230–250. [Google Scholar] [CrossRef] [PubMed] 5. Knuth, D.E. Algorithmic thinking and mathematical thinking. Am. Math. Mon. 1985, 92, 170–181. [Google Scholar] [CrossRef] 6. Leron, U.; Dubinsky, E. An abstract algebra story. Am. Math. Mon. 1995, 102, 227–242. [Google Scholar] [CrossRef] 7. Misfeldt, M.; Ejsing-Duun, S. Learning mathematics through programming: An instrumental approach to potentials and pitfalls. In CERME 9-Ninth Congress of the European Society for Research in Mathematics Education; The European Society for Research in Mathematics Education (ERME): Prague, Czech Republic, 2015; pp. 2524–2530. [Google Scholar] 8. Denning, P.J. The profession of IT Beyond computational thinking. Commun. ACM 2009, 52, 28–30. [Google Scholar] 9. Wing, J.M. Computational thinking. Commun. ACM 2006, 49, 33–35. [Google Scholar] [CrossRef] 10. Rowe, E.; Almeda, M.V.; Asbell-Clarke, J.; Scruggs, R.; Baker, R.; Bardar, E.; Gasca, S. Assessing implicit computational thinking in Zoombinis puzzle gameplay. Comput. Hum. Behav. 2021, 120, 106707. [Google Scholar] [CrossRef] 11. Jona, K.; Wilensky, U.; Trouille, L.; Horn, M.S.; Orton, K.; Weintrop, D.; Beheshti, E. Embedding computational thinking in science, technology, engineering, and math (CT-STEM). In Future Directions in Computer Science Education Summit Meeting; Stanford University: Orlando, FL, USA, 2014. [Google Scholar] 12. Orton, K.; Weintrop, D.; Beheshti, E.; Horn, M.; Jona, K.; Wilensky, U. Bringing Computational Thinking into High School Mathematics and Science Classrooms; International Society of the Learning Sciences: Singapore, 2016. [Google Scholar] 13. Repenning, A.; Webb, D.C.; Koh, K.H.; Nickerson, H.; Miller, S.B.; Brand, C.; Repenning, N. Scalable game design: A strategy to bring systemic computer science education to schools through game design and simulation creation. ACM Trans. Comput. Educ. (TOCE) 2015, 15, 1–31. [Google Scholar] [CrossRef] 14. Tatar, D.; Harrison, S.; Stewart, M.; Frisina, C.; Musaeus, P. Proto-computational thinking: The uncomfortable underpinnings. In Emerging Research, Practice, and Policy on Computational Thinking; Springer: Cham, Switzerland, 2017; pp. 63–81. [Google Scholar] 15. Futschek, G. Algorithmic thinking: The key for understanding computer science. In International Conference on Informatics in Secondary Schools-Evolution and Perspectives; Springer: Berlin/Heidelberg, Germany, 2006; pp. 159–168. [Google Scholar] 16. Broley, L.; Caron, F.; Saint-Aubin, Y. Levels of programming in mathematical research and university mathematics education. Int. J. Res. Undergrad. Math. Educ. 2018, 4, 38–55. [Google Scholar] [CrossRef] 17. Çamoğlu, K. Algorithm, 6th ed.; Kodlab: İstanbul, Turkey, 2018. [Google Scholar] 18. Kiss, G.; Arki, Z. The influence of game-based programming education on the algorithmic thinking. Procedia-Soc. Behav. Sci. 2017, 237, 613–617. [Google Scholar] [CrossRef] 19. Knuth, D.E. Computer science and its relation to mathematics. Am. Math. Mon. 1974, 81, 323–343. [Google Scholar] [CrossRef] 20. Anderson, J.R. Acquisition of cognitive skill. Psychol. Rev. 1982, 89, 369–406. [Google Scholar] [CrossRef] 21. Star, J.R. Reconceptualizing procedural knowledge. J. Res. Math. Educ. 2005, 36, 404–411. [Google Scholar] 22. Lithner, J. Principles for designing mathematical tasks that enhance imitative and creative reasoning. ZDM 2017, 49, 937–949. [Google Scholar] [CrossRef] 23. Lukhele, R.B.; Murray, H.; Olivier, A. Learners’ understanding of the addition of fractions. In Proceedings of the Fifth Annual Congress of the Association for Mathematics Education of South Africa; Port Elizabeth Technikon: Port Elizabeth, South Africa, 1999; Volume 1, pp. 87–97. [Google Scholar] 24. Leung, F.K.S. Mathematics education in East Asia and the West: Does culture matter? In Mathematics Education in Different Cultural Traditions: A Comparative Study of East Asia and the West; Leung, F.K.S., Graf, K.-D., Lopez-Real, F.J., Eds.; Springer: New York, NY, USA, 2006; pp. 21–46. [Google Scholar] 25. Bergqvist, T.; Lithner, J. Mathematical reasoning in teachers’ presentations. J. Math. Behav. 2012, 31, 252–269. [Google Scholar] [CrossRef] 26. Shield, M.; Dole, S. Assessing the potential of mathematics textbooks to promote deep learning. Educ. Stud. Math. 2013, 82, 183–199. [Google Scholar] [CrossRef] 27. Boesen, J.; Helenius, O.; Bergqvist, E.; Bergqvist, T.; Lithner, J.; Palm, T.; Palmberg, B. Developing mathematical competence: From the intended to the enacted curriculum. J. Math. Behav. 2014, 33, 72–87. [Google Scholar] [CrossRef] 28. Freudenthal, H. Didactical Phenomenology of Mathematical Structures; Springer Science & Business Media: Berlin/Heidelberg, Germany, 1986; Volume 1. [Google Scholar] 29. Hiebert, J.; Carpenter, T. Learning and teaching with understanding. In Handbook of Research on Mathematics Teaching and Learning; Grouws, D., Ed.; Simon Schuster Macmillan: New York, NY, USA, 1992; pp. 65–97. [Google Scholar] 30. Moreno, R. Decreasing cognitive load for novice students: Effects of explanatory versus corrective feedback in discovery-based multimedia. Instr. Sci. 2004, 32, 99–113. [Google Scholar] [CrossRef] 31. Oakes, J.; Lipton, M.; Anderson, L.; Stillman, J. Teaching to Change the World; Routledge: New York, NY, USA, 2018. [Google Scholar] [CrossRef] 32. Brousseau, G. Theory of Didactical Situations in Mathematics: Didactique des Mathématiques, 1970–1990; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2006; Volume 19. [Google Scholar] 33. Fan, L.; Bokhove, C. Rethinking the role of algorithms in school mathematics: A conceptual model with focus on cognitive development. ZDM 2014, 46, 481–492. [Google Scholar] [CrossRef] 34. Jonsson, B.; Norqvist, M.; Liljekvist, Y.; Lithner, J. Learning mathematics through algorithmic and creative reasoning. J. Math. Behav. 2014, 36, 20–32. [Google Scholar] [CrossRef] 35. Wirebring, L.K.; Lithner, J.; Jonsson, B.; Liljekvist, Y.; Norqvist, M.; Nyberg, L. Learning mathematics without a suggested solution method: Durable effects on performance and brain activity. Trends Neurosci. Educ. 2015, 4, 6–14. [Google Scholar] [CrossRef] 36. Naseer, M.; Zhang, W.; Zhu, W. Prediction of coding intricacy in a software engineering team through machine learning to ensure cooperative learning and sustainable education. Sustainability 2020, 12, 8986. [Google Scholar] [CrossRef] 37. Rittle-Johnson, B.; Star, J.R.; Durkin, K. Developing procedural flexibility: Are novices prepared to learn from comparing procedures? Br. J. Educ. Psychol. 2012, 82, 436–455. [Google Scholar] [CrossRef] 38. Kilpatrick, J.; Swafford, J.; Findell, B. Adding it Up: Helping Children Learn Mathematics; National Research Council, Ed.; National Academy Press: Washington, DC, USA, 2001; Volume 2101. [Google Scholar] 39. Wegener, I. Branching Programs and Binary Decision Diagrams: Theory and Applications; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 2000; ISBN 0-898-71458-3. [Google Scholar] 40. Kondrak, G.; Van Beek, P. A theoretical evaluation of selected backtracking algorithms. Artif. Intell. 1997, 89, 365–387. [Google Scholar] [CrossRef] 41. Van Beek, P. Backtracking search algorithms. In Foundations of Artificial Intelligence; Elsevier: Amsterdam, The Netherlands, 2006; Volume 2, pp. 85–134. [Google Scholar] 42. Wirth, N. Algorithms and Data Structures, 2nd ed.; Alfa: Bratislava, Slovakia, 1989; p. 488. ISBN 80-05-00153-3. (In Slovak) [Google Scholar] 43. Dewey, J. How We Think; D. C Heath Co Publishers: Chicago, IL, USA, 1910. [Google Scholar] 44. Stuart, A. A test for homogeneity of the marginal distributions in a two-way classification. Biometrika 1955, 42, 412–416. [Google Scholar] [CrossRef] 45. Maxwell, A.E. Comparing the classification of subjects by two independent judges. Br. J. Psychiatry 1970, 116, 651–655. [Google Scholar] [CrossRef] 46. Abbasi, N.; Dokoohaki, S.; Jamali, H. The Application of Stuart-Maxwell Test in Determining the Identically Distributed Correct Choice. Appl. Math. Sci. 2009, 3, 447–450. [Google Scholar] 47. Agresti, A. Categorical Data Analysis, 3rd ed.; John Wiley & Sons Inc: Hoboken, NJ, USA, 2013; p. 752. ISBN 0470463635. [Google Scholar] 48. McNemar, Q. Note on the sampling error of the difference between correlated proportions or percentages. Psychometrika 1947, 12, 153–157. [Google Scholar] [CrossRef] 49. Denning, P.J.; Tedre, M. Computational Thinking; Mit Press: Cambridge, MA, USA, 2019; ISBN 9780262536561. [Google Scholar] 50. Araya, R.; Isoda, M.; González, O. A Framework for Computational Thinking in Preparation for Transitioning to a Super Smart Society. J. Southeast Asian Educ. 2020, 1, 1–16. [Google Scholar] 51. Lisarelli, G.; Baccaglini-Frank, A.; Di Martino, P. From how to why: A quest for the common mathematical meanings behind two different division algorithms. J. Math. Behav. 2021, 63, 100897. [Google Scholar] [CrossRef] 52. Fuson, K.C.; Kalchman, M.; Bransford, J.D. Mathematical understanding: An introduction. In How Students Learn: History, Mathematics, and Science in the Classroom; National Research Council: Washington, DC, USA, 2005; pp. 217–256. [Google Scholar] 53. Hiebert, J. What research says about the NCTM standards. In A Research Companion to Principles and Standards for School Mathematics; National Council of Teachers of Mathematics: Reston, VA, USA, 2003; pp. 5–23. [Google Scholar] 54. Lithner, J. Students’ mathematical reasoning in university textbook exercises. Educ. Stud. Math. 2003, 52, 29–55. [Google Scholar] [CrossRef] 55. Escalera Chávez, M.E.; Moreno García, E.; Rojas Kramer, C.A. Confirmatory Model to Measure Attitude towards Mathematics in Higher Education Students: Study Case in SLP Mexico. Int. Electron. J. Math. Educ. 2019, 14, 163–168. [Google Scholar] 56. Laudano, F.; Tortoriello, F.S.; Vincenzi, G. An experience of teaching algorithms using inquiry-based learning. Int. J. Math. Educ. Sci. Technol. 2020, 51, 344–353. [Google Scholar] [CrossRef] 57. Olteanu, C. Reflection-for-action and the choice or design of examples in the teaching of mathematics. Math. Educ. Res. J. 2017, 29, 349–367. [Google Scholar] [CrossRef] 58. Căprioară, D. Problem solving-purpose and means of learning mathematics in school. Procedia-Soc. Behav. Sci. 2015, 191, 1859–1864. [Google Scholar] [CrossRef] 59. Amar, G.I.; Suranto, S. The Use of Creative Problem Solving Based Genetic Mutation Module in Higher Education. Int. J. High. Educ. 2021, 10, 33–45. [Google Scholar] [CrossRef] 60. García, T.; Boom, J.; Kroesbergen, E.H.; Núñez, J.C.; Rodríguez, C. Planning, execution, and revision in mathematics problem solving: Does the order of the phases matter? Stud. Educ. Eval. 2019, 61, 83–93. [Google Scholar] [CrossRef] 61. Elia, I.; van den Heuvel-Panhuizen, M.; Kolovou, A. Exploring strategy use and strategy flexibility in non-routine problem solving by primary school high achievers in mathematics. ZDM 2009, 41, 605–618. [Google Scholar] [CrossRef] 62. Abdullah, A.H.; Rahman, S.N.S.A.; Hamzah, M.H. Metacognitive skills of Malaysian students in non-routine mathematical problem solving. Bolema: Bol. De Educ. Matemática 2017, 31, 310–322. [Google Scholar] [CrossRef] 63. Baroody, A.J. The development of adaptive expertise and flexibility: The integration of conceptual and procedural knowledge. In The Development of Arithmetic Concepts and Skills: Constructing Adaptive Expertise; Baroody, A.J., Dowker, A., Eds.; Erlbaum: Mahwah, NJ, USA, 2003; pp. 1–34. [Google Scholar] 64. Rittle-Johnson, B.; Schneider, M. Developing conceptual and procedural knowledge of mathematics. In Oxford Handbook of Numerical Cognition; Oxford University Press: Oxford, UK, 2015; pp. 1118–1134. [Google Scholar] [CrossRef] 65. Fuson, K.C. A Forum for Researchers: Issues in Place-Value and Multidigit Addition and Subtraction Learning and Teaching for Research on Mathematics Teaching. J. Res. Math. Educ. 1990, 21, 273–280. [Google Scholar] [CrossRef] 66. Benton, L.; Saunders, P.; Kalas, I.; Hoyles, C.; Noss, R. Designing for learning mathematics through programming: A case study of pupils engaging with place value. Int. J. Child-Comput. Interact. 2018, 16, 68–76. [Google Scholar] [CrossRef] 67. Phonapichat, P.; Wongwanich, S.; Sujiva, S. An analysis of elementary school students’ difficulties in mathematical problem solving. Procedia-Soc. Behav. Sci. 2014, 116, 3169–3174. [Google Scholar] [CrossRef]
utb.fulltext.sponsorship This research received no external funding. This work was supported by the Slovak Research and Development Agency under the contract No. APVV-14-0446, the Cultural and Educational Grant Agency of the Ministry of Education, Science, Research and Sports of the Slovak Republic No. KEGA 015UKF-4/2021 and the Scientific Grant Agency of the Ministry of Education, Science, Research and Sports of the Slovak Republic and the Slovak Academy of Sciences No. VEGA 1/0216/21.
utb.wos.affiliation [Gonda, Dalibor] Univ Zilina, Fac Management Sci & Informat, Dept Math Methods & Operat Res, Univ 1, Zilina 01001, Slovakia; [Duris, Viliam; Tirpakova, Anna; Pavlovicova, Gabriela] Constantine Philosopher Univ Nitra, Fac Nat Sci, Dept Math, Tr A Hlinku 1, Nitra 94901, Slovakia; [Tirpakova, Anna] Tomas Bata Univ Zlin, Fac Humanities, Dept Sch Educ, Stefanikova 5670, Zlin 76000, Czech Republic
utb.scopus.affiliation Department of Mathematical Methods and Operations Research, Faculty of Management Science and Informatics, University of Žilina, Univerzitná 1, Žilina, 01001, Slovakia; Department of Mathematics, Faculty of Natural Sciences, Constantine The Philosopher University in Nitra, Tr. A. Hlinku 1, Nitra, 94901, Slovakia; Department of School Education, Faculty of Humanities, Tomas Bata University in Zlín, Štefánikova 5670, Zlín, 760 00, Czech Republic
utb.fulltext.projects APVV-14-0446
utb.fulltext.projects KEGA 015UKF-4/2021
utb.fulltext.projects VEGA 1/0216/21
utb.fulltext.faculty Faculty of Humanities
utb.fulltext.ou Department of School Education
Find Full text

Soubory tohoto záznamu

Zobrazit minimální záznam

Attribution 4.0 International Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je Attribution 4.0 International