Publikace UTB
Repozitář publikační činnosti UTB

Predictive control of processes with utilization of artificial intelligence elements

Repozitář DSpace/Manakin

Zobrazit minimální záznam


dc.title Predictive control of processes with utilization of artificial intelligence elements en
dc.contributor.author Blahová, Marta
dc.contributor.author Mach, Václav
dc.contributor.author Valouch, Jan
dc.relation.ispartof Annals of DAAAM and Proceedings of the International DAAAM Symposium
dc.identifier.issn 1726-9679 Scopus Sources, Sherpa/RoMEO, JCR
dc.identifier.isbn 978-3-902734-29-7
dc.date.issued 2020
utb.relation.volume 31
utb.relation.issue 1
dc.citation.spage 626
dc.citation.epage 631
dc.event.title 31st International DAAAM Virtual Symposium "Intelligent Manufacturing and Automation"
dc.event.location Mostar
utb.event.state-en Croatia
utb.event.state-cs Chorvatsko
dc.event.sdate 2020-10-21
dc.event.edate 2020-10-24
dc.type conferenceObject
dc.language.iso en
dc.publisher DAAAM International Vienna
dc.identifier.doi 10.2507/31st.daaam.proceedings.086
dc.relation.uri https://daaam.info/31st-proceedings-2020
dc.relation.uri https://www.daaam.info/Downloads/Pdfs/proceedings/proceedings_2020/086.pdf
dc.subject predictive control en
dc.subject discrete dynamic models en
dc.subject artificial intelligence en
dc.subject neural networks en
dc.subject evolutionary algorithms en
dc.description.abstract Predictive process control is a method of regulation suitable for controlling various types of systems, which is based on the idea of using the prediction of future system behavior and its optimization. Normally, a system model is used to predict behavior, and therefore it is necessary for the correct function of predictive control to make its correct selection and determine its parameters so that the controlled system is described as accurately as possible. Another advantage of predictive control is the possibility of including signal restrictions directly in the controller. The result is the application of some elements of artificial intelligence in suitable areas of predictive control, especially the use of simple evolutionary algorithms in optimization and neural networks as nonlinear models. One of the chapters of the article describes the possibilities of using these elements. It is proved that in addition to classical optimization algorithms, it is also possible to use simple evolutionary algorithms for optimization of prediction, while the computational complexity can be comparable depending on the type of solved problem and settings. The article describes a suitable selection of model systems with slow dynamics, their derivation, and the creation of nonlinear models in the form of scalable neural networks. The potential advantage of this approach for the control of systems that are difficult to describe or for the control of systems whose mathematical-physical description is not known. The chapter of the article also deals with the possibility of using the found models on real systems and determining the necessary conditions and requirements for their application. © 2020 Danube Adria Association for Automation and Manufacturing, DAAAM. All rights reserved. en
utb.faculty Faculty of Applied Informatics
dc.identifier.uri http://hdl.handle.net/10563/1011224
utb.identifier.obdid 43881666
utb.identifier.scopus 2-s2.0-85098178529
utb.source d-scopus
dc.date.accessioned 2023-01-06T08:03:56Z
dc.date.available 2023-01-06T08:03:56Z
dc.description.sponsorship IGA/CebiaTech/2020/003, IGA/FAI/2020/003; Ministerstvo Školství, Mládeže a Tělovýchovy, MŠMT: LO1303, MSMT-7778/2014; European Regional Development Fund, ERDF: CEBIA-Tech ED2.1.00/03.0089
utb.contributor.internalauthor Blahová, Marta
utb.contributor.internalauthor Mach, Václav
utb.contributor.internalauthor Valouch, Jan
utb.fulltext.affiliation Marta Blahova, Vaclav Mach & Jan Valouch
utb.fulltext.dates -
utb.fulltext.references [1] Kluever, Craig A. (2015). Dynamic systems: modeling, simulation, and control. Hoboken, NJ: John Wiley and Sons, Inc. ISBN 9781118289457. [2] Rossiter, J. (2003). Model-based Predictive Control: A Practical Approach. CRC Press. [3] Khaled, N.; Bibin Pattel. (2018). Practical design and application of model predictive control: MPC for MATLAB and Simulink users. Kidlington, Oxford: Butterworth-Heinemann, an imprint of Elsevier. ISBN 9780128139196. [4] Rawlings, J. B.; David Q. Mayne. (2009). Model predictive control: theory and design. Madison, Wis.: Nob Hill Pub. 533 s. ISBN 9780975937709. [5] Mikleš, J.; Fikar M. (2004). Modeling, identification and process control 2. Identification and optimal control. STU Press, Bratislava. 260 pp. ISBN 80-227-2134-4. [6] Bobál, V. (2008). Adaptive and predictive control. Edition 1. Zlin: Tomas Bata University in Zlin, 134 pp. ISBN 978-80-7318-662-3. [7] Ploskas, N.; Nikolaos Samaras. (2017). Linear programming using MATLAB. Cham: Springer. ISBN 9783319659190. [8] Kochendefer, M. J. and Tim A. Wheeler. (2019). Algorithms for optimization. ISBN 9780262039420. [9] Wang, L. (2009). Model predictive control system design and implementation using MATLAB. London: Springer. 375 s. ISBN 9781848823303. [10] Lee Gue Myung, Tam N.N., Yen Nquyen Dong. (2005). Quadratic Programming and Affine Variational Inequalities: A Qualitative Study. Springer US. ISBN 978-0-387-24278-1. [11] Back, T.; B. Fogel David; Michalewicz Zbigniew. (1997). Handbook of Evolutionary Computation. Oxford University Press. 988 pp. ISBN 0750303927. [12] Mirjalili, S. (2018). Evolutionary algorithms and neural networks: theory and applications. ISBN 9783319930244; 1860-949X. [13] Simon, D. (2013). Evolutionary optimization algorithms: Biologically-Inspired and population-based approaches to computer intelligence. Hoboken, New Jersey: John Wiley & Sons Inc. ISBN 9780470937419. [14] Anonymous. (2018). Selecting a Model Structure in the System Identification Process. Available from: http://www.ni.com/product-documentation/4028/en/. [15] Russell, S. J.; Peter Norvig. (2010). Artificial intelligence: a modern approach. Upper Saddle River, N.J.: Prentice Hall. 1132 pp. ISBN 0132071487.
utb.fulltext.sponsorship This work was supported by the Ministry of Education, Youth and Sports of the Czech Republic within the National Sustainability Program Project No. LO1303 (MSMT-7778/2014) and also by the European Regional Development Fund under the project CEBIA-Tech ED2.1.00/03.0089 and by the Internal Grant Agency of Tomas Bata University under the project No. IGA/CebiaTech/2020/003, project No. IGA/FAI/2020/003 and Institute of Security Engineering, Faculty of Applied Informatics.
utb.fulltext.projects LO1303(MSMT-7778/2014)
utb.fulltext.projects CEBIA-Tech ED2.1.00/03.0089
utb.fulltext.projects IGA/CebiaTech/2020/003
utb.fulltext.projects IGA/FAI/2020/003
utb.fulltext.faculty -
utb.fulltext.ou -
Find Full text

Soubory tohoto záznamu

Zobrazit minimální záznam