Kontaktujte nás | Jazyk: čeština English
dc.title | Custom Matlab toolbox for systems with parametric uncertainties and time delay with factorization for two-degree-of-freedom feedback loop | en |
dc.contributor.author | Dlapa, Marek | |
dc.relation.ispartof | IEEE International Conference on Emerging Technologies and Factory Automation, ETFA | |
dc.identifier.issn | 1946-0740 Scopus Sources, Sherpa/RoMEO, JCR | |
dc.identifier.issn | 1946-0759 Scopus Sources, Sherpa/RoMEO, JCR | |
dc.identifier.isbn | 978-1-6654-9996-5 | |
dc.date.issued | 2022 | |
utb.relation.volume | 2022-September | |
dc.event.title | 27th IEEE International Conference on Emerging Technologies and Factory Automation, ETFA 2022 | |
dc.event.location | Stuttgart | |
utb.event.state-en | Germany | |
utb.event.state-cs | Německo | |
dc.event.sdate | 2022-09-06 | |
dc.event.edate | 2022-09-09 | |
dc.type | conferenceObject | |
dc.language.iso | en | |
dc.publisher | Institute of Electrical and Electronics Engineers Inc. | |
dc.identifier.doi | 10.1109/ETFA52439.2022.9921426 | |
dc.relation.uri | https://ieeexplore.ieee.org/document/9921426 | |
dc.relation.uri | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9921426 | |
dc.subject | structured singular value | en |
dc.subject | uncertain time delay systems | en |
dc.subject | robust control | en |
dc.subject | algebraic approach | en |
dc.subject | parametric uncertainties | en |
dc.description.abstract | The Robust Control Toolbox for Time Delay Systems with Parametric Uncertainties for the Matlab system is described in this paper. The D-K iteration and the algebraic approach implemented for general 3rd order system with parametric uncertainties in numerator and denominator of plant transfer function and uncertain time delay with factorization of simple feedback controller to the parts in two-degree-of-freedom feedback interconnection is included in the toolbox. The multiplicative uncertainty treats uncertain time delay, the general interconnection for the systems with parametric uncertainty in numerator and denominator is used for modelling the parametric uncertainty. User-friendly interface empowering full operation is implemented in the toolbox. | en |
utb.faculty | Faculty of Applied Informatics | |
dc.identifier.uri | http://hdl.handle.net/10563/1011254 | |
utb.identifier.obdid | 43884008 | |
utb.identifier.scopus | 2-s2.0-85141380989 | |
utb.identifier.wok | 000934103900007 | |
utb.identifier.coden | 85ROA | |
utb.source | d-scopus | |
dc.date.accessioned | 2023-01-06T08:03:58Z | |
dc.date.available | 2023-01-06T08:03:58Z | |
dc.description.sponsorship | Ministerstvo Školství, Mládeže a Tělovýchovy, MŠMT: LO1303, MSMT-7778/2014 | |
utb.ou | Department of Automation and Control Engineering | |
utb.contributor.internalauthor | Dlapa, Marek | |
utb.fulltext.affiliation | Marek Dlapa Department of Automation and Control Engineering Faculty of Applied Informatics, Tomas Bata University in Zlin Nad Stranemi 4511, 760 05 Zlin, Czech Republic E-mail: dlapa@utb.cz; ORCID: orcid.org/0000-0003-2550-7062 | |
utb.fulltext.dates | - | |
utb.fulltext.references | [1] B.R. Barmish, Invariance of strict Hurwitz property for polynomials with perturbed coefficients, IEEE Transactions on Automatic Control, Vol. 29, 1984. [2] B.R. Barmish, A generalization of Kharitinov’s four polynomial concept for robust stability with linearly dependent coefficient perturbations, IEEE Transactions on Automatic Control, Vol. 34, No. 2, 1989. [3] B. Barmish, J.E. Ackermann, and H.Z. Hu, The tree structured decomposition: a new approach to robust stability analysis, Proceedings Conference on Information Sciences and Systems, John Hopkins University, Baltimore, 1989. [4] B. Barmish and Z. Shi, Robust stability of class of polynomials with coefficient depending multilinearly on perturbations, IEEE Transactions on Automatic Control, Vol. 35, No. 9, 1990. [5] A.C. Bartlett, C. Hollot, and H. Lin, Root Locations of an entire polytope of polynomials: it suffices to check the edges, Mathematics of Control, Signals and Systems, Vol. 1, No. 1, pp. 61-71, 1988. [6] S. Bialas, A necessary and sufficient conditions for stability of interval matrices, International Journal of Control, Vol. 37, pp. 717-722, 1983. [7] H. Chapellat and S.P. Bhattacharyya, An alternative proof of Kharitonov’s theorem: robust stability of interval plants, IEEE Transactions on Automatic Control, Vol. 34, No. 3, 1989. [8] H. Chapellat, M. Dahleh and S.P. Bhattacharyya, Robust stability manifolds for multilinear interval systems, IEEE Transactions on Automatic Control, Vol. 38, No. 2, 1993. [9] M. Dlapa, “Differential Migration: Sensitivity Analysis and Comparison Study,” Proceedings of 2009 IEEE Congress on Evolutionary Computation (IEEE CEC 2009), May 18-21, 2009, pp. 1729-1736, ISBN 978-1-4244-2959-2. [10] M. Dlapa, „Robust Control Design Toolbox for Time Delay Systems with Parametric Uncertainties,“ 14th European Control Conference (ECC'15), July 15-17, 2015, Linz, Austria, pp. 788-793, ISBN 978-3-9524269-4-4. [11] M. Dlapa, „Cluster Restarted DM: New Algorithm for Global Optimisation,“ Intelligent Systems Conference 2017 (IntelliSys 2017), September 7-8, 2017, London, UK, pp. 1130-1135, ISBN 978-1-5090-6435-9. [12] M. Dlapa, „Controller Design for Highly Maneuverable Aircraft Technology Using Structured Singular Value and Direct Search Method,“ The 2020 International Conference on Unmanned Aircraft Systems (ICUAS 2020), September 1-4, 2020, Divani Caravel Hotel, Athens, Greece, ISBN 978-1-7281-4277-7/20. [13] M. Dlapa, „Robust Control Design Toolbox for General Time Delay Systems via Structured Singular Value: Unstable Systems with Factorization for Two-Degree-of-Freedom Controller,“ IEEE The 22nd International Conference on Industrial Technology (IEEE ICIT 2021), March 10-12, 2021, Valencia, Spain, pp. 93-98, ISBN 978-1-7281-5729-0/21. [14] J. C. Doyle, “Structure uncertainty in control system design,” in Proceedings of 24th IEEE Conference on decision and control, pp. 260- 265, 1985. [15] J. C. Doyle, P. P. Khargonekar, and B.A. Francis, “State-space solutions to standard H2 and H∞ control problems,” IEEE Transactions on Automatic Control, vol. 34, no. 8, pp. 831-847, 1989. [16] M. Fu, S. Dasgupta, and V. Blondel, “Robust stability under a class of nonlinear parametric perturbations,” IEEE Transactions on Automation Control, Vol. 40, No. 2, 1995. [17] P. Gahinet and P. Apkarian, “A linear matrix inequality approach to H∞ control,” International Journal of Robust and Nonlinear Control, 4, 421-449, 1994. [18] V. Kharitonov, Asymptotic stability of an equilibrium position of a family of linear differential equations, Differencialnye Uravneniya, Vol. 14, 1978. [19] A. Packard and J. C. Doyle, “The complex structured singular value,” Automatica, vol. 29(1), pp. 71-109, 1993. [20] A. Sideris and R. de Gaston, Multivariable stability margin calculation with uncertainty correlated parameters, Proceedings Conference on Decision and Control, Athens, 1986. [21] G. Stein and J. Doyle, “Beyond Singular Values and Loopshapes,” AIAA Journal of Guidance and Control, Vol. 14, No. 1, pp. 5-16, 1991. [22] L. Zadeh and C. Desoer, Linear System Theory: The State Space Approach, McGraw-Hill, New York, 1963. [23] Internet: http://dlapa.cz/homeeng.htm | |
utb.fulltext.sponsorship | This work was supported by the Ministry of Education, Youth and Sports of the Czech Republic within the National Sustainability Programme project No. LO1303 (MSMT7778/2014). | |
utb.wos.affiliation | [Dlapa, Marek] Tomas Bata Univ Zlin, Fac Appl Informat, Dept Automat & Control Engn, Stranemi 4511, Zlin 76005, Czech Republic | |
utb.scopus.affiliation | Faculty of Applied Informatics, Tomas Bata University in Zlin, Department of Automation and Control Engineering, Nad Stranemi 4511, Zlin, 760 05, Czech Republic | |
utb.fulltext.projects | LO1303 (MSMT7778/2014) | |
utb.fulltext.faculty | Faculty of Applied Informatics | |
utb.fulltext.ou | Department of Automation and Control Engineering |