Publikace UTB
Repozitář publikační činnosti UTB

Inner dynamics of particle swarm optimization interpreted by complex network analysis

Repozitář DSpace/Manakin

Zobrazit minimální záznam


dc.title Inner dynamics of particle swarm optimization interpreted by complex network analysis en
dc.contributor.author Pluháček, Michal
dc.contributor.author Kadavý, Tomáš
dc.contributor.author Kazíková, Anežka
dc.contributor.author Viktorin, Adam
dc.contributor.author Šenkeřík, Roman
dc.relation.ispartof 2022 IEEE Workshop on Complexity in Engineering, COMPENG 2022
dc.identifier.isbn 978-1-7281-7124-1
dc.date.issued 2022
dc.event.title 2022 IEEE Workshop on Complexity in Engineering, COMPENG 2022
dc.event.location Florence
utb.event.state-en Italy
utb.event.state-cs Itálie
dc.event.sdate 2022-07-18
dc.event.edate 2022-07-20
dc.type conferenceObject
dc.language.iso en
dc.publisher Institute of Electrical and Electronics Engineers Inc.
dc.identifier.doi 10.1109/COMPENG50184.2022.9905435
dc.relation.uri https://ieeexplore.ieee.org/document/9905435
dc.relation.uri https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9905435
dc.subject particle swarm optimization en
dc.subject complex network en
dc.subject population diversity en
dc.description.abstract In this paper, we present the relation between the inner dynamics of the particle swarm optimization algorithm and the properties of a complex network recording the information transfer in the population. Using population diversity as an example, we argue that the complex network analysis is a viable tool for assessing the state of the population and the eventual necessity of an adaptive intervention. © 2022 IEEE. en
utb.faculty Faculty of Applied Informatics
dc.identifier.uri http://hdl.handle.net/10563/1011257
utb.identifier.obdid 43884094
utb.identifier.scopus 2-s2.0-85141085054
utb.source d-scopus
dc.date.accessioned 2023-01-06T08:03:59Z
dc.date.available 2023-01-06T08:03:59Z
dc.description.sponsorship IGA/CebiaTech/2022/001
utb.contributor.internalauthor Pluháček, Michal
utb.contributor.internalauthor Kadavý, Tomáš
utb.contributor.internalauthor Kazíková, Anežka
utb.contributor.internalauthor Viktorin, Adam
utb.contributor.internalauthor Šenkeřík, Roman
utb.fulltext.affiliation Michal Pluhacek, Tomas Kadavy, Anezka Kazikova, Adam Viktorin and Roman Senkerik Faculty of Applied Informatics Tomas Bata University in Zlin T.G. Masaryka 5555, 760 01 Zlin, Czech Republic {pluhacek, kadavy, kazikova, aviktorin, senkerik}@utb.cz
utb.fulltext.dates -
utb.fulltext.references [1] J. Kennedy and R. Eberhart, "Particle swarm optimization," in Proceedings of the IEEE International Conference on Neural Networks, 1995, pp. 1942–1948. [2] Y. Shi and R. Eberhart, "A modified particle swarm optimizer," in Proceedings of the IEEE International Conference on Evolutionary Computation (IEEE World Congress on Computational Intelligence), 1998, pp. 69–73.I. S. [3] J. Kennedy, "The particle swarm: social adaptation of knowledge," in Proceedings of the IEEE International Conference on Evolutionary Computation, 1997, pp. 303–308. [4] F. van den Bergh, A.P. Engelbrecht, A study of particle swarm optimization particle trajectories, Information Sciences, Volume 176, Issue 8, 22 April 2006, pages 937-971, ISSN 0020-0255, [5] M. Montes de Oca, J. Pena, T. Stutzle, C. Pinciroli, and M. Dorigo. "Heterogeneous particle swarm optimizers," in Proceedings of the IEEE Congress on Evolutionary Computation, 2009, pp. 698–705. [6] A. Ratnaweera, S. Halgamuge, and H. Watson, "Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients," IEEE Transactions on Evolutionary Computation, vol. 8, no. 3, pp. 240–255, 2004. [7] Deng, W., Zhao, H., Yang, X., Xiong, J., Sun, M., & Li, B. (2017). Study on an improved adaptive PSO algorithm for solving multi-objective gate assignment. Applied Soft Computing, 59, 288-302. [8] Morrison, R. W., & Jong, K. A. D. (2001, October). Measurement of population diversity. In International conference on artificial evolution (evolution artificielle) (pp. 31-41). Springer, Berlin, Heidelberg. [9] Pluhacek, M., Viktorin, A., Kadavy, T., & Kazikova, A. (2021, December). On the common population diversity measures in metaheuristics and their limitations. In 2021 IEEE Symposium Series on Computational Intelligence (SSCI) (pp. 1-7). IEEE. [10] I. Zelinka, D. Davendra, R. Senkerik, R. Jasek,: Do Evolutionary Algorithm Dynamics Create Complex Network Structures? Complex Systems 2, 0891–2513, 20, 127–140, 2011 [11] I. Zelinka, D. Davendra, M. Chadli, R. Senkerik, T.T. Dao, L. Skanderova,:Evolutionary Dynamics as The Structure of Complex Networks. In: Zelinka, I.,Snasel, V., Abraham, A. (eds.) Handbook of Optimization. ISRL, vol. 38, pp. 215–243. Springer, Heidelberg (2013) [12] I. Zelinka, Investigation on relationship between complex network and evolutionary algorithms dynamics, AIP Conference Proceedings 1389 (1) 1011–1014, 2011. [13] D. Davendra, I. Zelinka, R. Senkerik. and M. Pluhacek, Complex Network Analysis of Discrete Self-organising Migrating Algorithm, in: Zelinka, I. and Suganthan, P. and Chen, G. and Snasel, V. and Abraham, A. and Rossler, O. (Eds.) Nostradamus 2014: Prediction, Modeling and Analysis of Complex Systems, Advances in Intelligent Systems and Computing, Springer Berlin Heidelberg, pp. 161–174 , 2014. [14] D. Davendra, I. Zelinka, M. Metlicka, R. Senkerik, M. Pluhacek, "Complex network analysis of differential evolution algorithm applied to flowshop with no-wait problem," Differential Evolution (SDE), 2014 IEEE Symposium on , vol., no., pp.1,8, 9-12 Dec, 2014 [15] Pluhacek, M., Janostik, J., Senkerik, R., Zelinka, I., & Davendra, D. (2016). PSO as complex network—capturing the inner dynamics—initial study. In Proceedings of the Second International Afro-European Conference for Industrial Advancement AECIA 2015 (pp. 551-559). Springer, Cham. [16] Zhang, Junlong, and Yu Luo. "Degree centrality, betweenness centrality, and closeness centrality in social network." 2017 2nd international conference on modelling, simulation and applied mathematics (MSAM2017). Atlantis Press, 2017. [17] R. Poláková, J. Tvrdík, P. Bujok, R. Matoušek, Population-size adaptation through diversity-control mechanism for differential evolution. In MENDEL, 22th International Conference on Soft Computing, 2016, (pp. 49-56). [18] Wolfram Language. (2012). GraphLinkEfficiency. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/GraphLinkEfficiency.html
utb.fulltext.sponsorship This work was supported by the Internal Grant Agency of Tomas Bata University under the Projects no. IGA/CebiaTech/2022/001, and further by the resources of A.I.Lab at the Faculty of Applied Informatics, Tomas Bata University in Zlin (ailab.fai.utb.cz).
utb.scopus.affiliation Tomas Bata University in Zlin, Faculty of Applied Informatics, Zlin, 760 01, Czech Republic
utb.fulltext.projects IGA/CebiaTech/2022/001
utb.fulltext.faculty Faculty of Applied Informatics
utb.fulltext.faculty Faculty of Applied Informatics
utb.fulltext.faculty Faculty of Applied Informatics
utb.fulltext.faculty Faculty of Applied Informatics
utb.fulltext.faculty Faculty of Applied Informatics
utb.fulltext.ou -
utb.fulltext.ou -
utb.fulltext.ou -
utb.fulltext.ou -
utb.fulltext.ou -
Find Full text

Soubory tohoto záznamu

Zobrazit minimální záznam