Publikace UTB
Repozitář publikační činnosti UTB

Physicochemical and sensory properties of Czech lager beers with increasing original wort extract values during cold storage

Repozitář DSpace/Manakin

Zobrazit minimální záznam


dc.title Physicochemical and sensory properties of Czech lager beers with increasing original wort extract values during cold storage en
dc.contributor.author Salek, Richardos-Nicolaos
dc.contributor.author Lorencová, Eva
dc.contributor.author Gál, Robert
dc.contributor.author Kůrová, Vendula
dc.contributor.author Opustilová, Kristýna
dc.contributor.author Buňka, František
dc.relation.ispartof Foods
dc.identifier.issn 2304-8158 Scopus Sources, Sherpa/RoMEO, JCR
dc.date.issued 2022
utb.relation.volume 11
utb.relation.issue 21
dc.type article
dc.language.iso en
dc.publisher MDPI
dc.identifier.doi 10.3390/foods11213389
dc.relation.uri https://www.mdpi.com/2304-8158/11/21/3389
dc.relation.uri https://www.mdpi.com/2304-8158/11/21/3389/pdf?version=1666869045
dc.subject Czech beer en
dc.subject original wort extract en
dc.subject storage en
dc.subject physicochemical properties en
dc.subject sensory attributes en
dc.description.abstract The scope of the study was the evaluation of the selected physicochemical (O-2 and CO2 contents, bitterness, color, total polyphenol content (TPC), turbidity, foaming stability) and sensory properties of Czech lager beer with different original wort extract (OWE) values (OWE of 10.0; 11.0; 11.5; 12.0% w/w) during a cold storage period of 6 months (4 +/- 2 degrees C). The length of the cold storage period did not influence the values of dissolved O-2 and CO2 , bitterness, color and foam stability of the samples. Contrarily, the TPC, turbidity, and sensory attributes of the samples were affected by the course of cold storage. The OWE values did not affect the development of the parameters tested. All beer samples stored until the 5th month presented "very good" sensory characteristics. Cold storage of beer is advantageous in order to maintain its freshness and sensory attributes at the highest level for the final consumer. en
utb.faculty Faculty of Technology
dc.identifier.uri http://hdl.handle.net/10563/1011262
utb.identifier.obdid 43883985
utb.identifier.scopus 2-s2.0-85141666488
utb.identifier.wok 000881091900001
utb.identifier.pubmed 36360002
utb.source J-wok
dc.date.accessioned 2023-01-06T08:03:59Z
dc.date.available 2023-01-06T08:03:59Z
dc.description.sponsorship internal grant agency of Tomas Bata University in Zlin, Czech Republic [IGA/FT/2022/005]
dc.description.sponsorship Univerzita Tomáše Bati ve Zlíně: IGA/FT/2022/005
dc.rights Attribution 4.0 International
dc.rights.uri https://creativecommons.org/licenses/by/4.0/
dc.rights.access openAccess
utb.ou Department of Food Technology
utb.contributor.internalauthor Salek, Richardos-Nicolaos
utb.contributor.internalauthor Lorencová, Eva
utb.contributor.internalauthor Gál, Robert
utb.contributor.internalauthor Kůrová, Vendula
utb.contributor.internalauthor Opustilová, Kristýna
utb.fulltext.affiliation Richardos Nikolaos Salek 1, Eva Lorencová 1,*, Robert Gál 1, Vendula Kůrová 1, Kristýna Opustilová 1 and František Buňka 2 1 Department of Food Technology, Faculty of Technology, Tomas Bata University in Zlín, T.G. Masaryka 5555, 760 01 Zlín, Czech Republic 2 Laboratory of Food Quality and Safety Research, Department of Logistics, Faculty of Military Leadership, University of Defence, Kounicova 65, 662 10 Brno, Czech Republic * Correspondence: lorencova@utb.cz; Tel.: +420-576-03-3010
utb.fulltext.dates Received: 24 September 2022 Revised: 25 October 2022 Accepted: 25 October 2022 Published: 27 October 2022
utb.fulltext.references 1. Adamenko, K.; Kawa-Rygielska, J.; Kucharska, A.Z. Characteristics of Cornelian cherry sour non-alcoholic beers brewed with the special yeast Saccharomycodes ludwigii. Food Chem. 2020, 312, 125968. [Google Scholar] [CrossRef] 2. Lorencová, E.; Salek, R.N.; Černošková, I.; Buňka, F. Evaluation of force-carbonated Czech-type lager beer quality during storage in relation to the applied type of packaging. Food Control 2019, 106, 106706. [Google Scholar] [CrossRef] 3. Gagula, G.; Mastanjević, K.; Mastanjević, K.; Krstanović, V.; Horvat, D.; Magdić, D. The influence of packaging material on volatile compounds of pale lager beer. Food Packag. Shelf Life 2020, 24, 100496. [Google Scholar] [CrossRef] 4. Bryła, M.; Ksieniewicz-Woźniak, E.; Waśkiewicz, A.; Szymczyk, K.; Jędrzejczak, R. Co-occurrence of nivalenol, deoxynivalenol and deoxynivalenol-3-glucoside in beer samples. Food Control 2018, 92, 319–324. [Google Scholar] [CrossRef] 5. Da Silva, L.A.; Flumignan, D.L.; Pezza, H.R.; Pezza, L. 1H NMR spectroscopy combined with multivariate data analysis for differentiation of Brazilian lager beer according to brewery. Eur. Food Res. Technol. 2019, 245, 2365–2372. [Google Scholar] [CrossRef] 6. Denby, C.M.; Li, R.A.; Vu, V.T.; Costello, Z.; Lin, W.; Chan, L.J.G.; Williams, J.; Donaldson, B.; Bamforth, C.W.; Petzold, C.J.; et al. Industrial brewing yeast engineered for the production of primary flavor determinants in hopped beer. Nat. Commun. 2018, 9, 965. [Google Scholar] [CrossRef] 7. Kawa-Rygielska, J.; Adamenko, K.; Kucharska, A.Z.; Prorok, P.; Piórecki, N. Physicochemical and antioxidative properties of Cornelian cherry beer. Food Chem. 2019, 281, 147–153. [Google Scholar] [CrossRef] 8. Capece, A.; Romaniello, R.; Pietrafesa, A.; Siesto, G.; Pietrafesa, R.; Zambuto, M.; Romano, P. Use of Saccharomyces cerevisiae var. boulardii in co-fermentations with S. cerevisiae for the production of craft beers with potential healthy value-added. Int. J. Food Microbiol. 2018, 284, 22–30. [Google Scholar] [CrossRef] 9. Neto, J.R.O.; de Macêdo, I.Y.L.; de Oliveira, N.R.L.; de Ferreira, R.Q.; de Gil, E.S. Antioxidant capacity and total phenol content in hop and malt commercial samples. Electroanalysis 2017, 29, 2788–2792. [Google Scholar] [CrossRef] 10. Hempel, A.; O’Sullivan, M.G.; Papkovsky, D.B.; Kerry, J.P. Use of optical oxygen sensors to monitor residual oxygen in pre- and post-pasteurised bottled beer and its effect on sensory attributes and product acceptability during simulated commercial storage. LWT 2013, 50, 226–231. [Google Scholar] [CrossRef] 11. Čejka, P.; Kellner, V.; Čulík, J.; Horák, T.; Jurková, M. Characterizing a Czech-Type Beer. Kvasny Prumysl 2004, 50, 3–11. [Google Scholar] [CrossRef] 12. Olšovská, J.; Čejka, P.; Sigler, K.; Hönigová, V. The phenomenon of Czech beer: A review. Czech J. Food Sci. 2014, 32, 309–319. [Google Scholar] [CrossRef] 13. Czech Republic, Decree No. 248/2018 Coll. Requirements for Beverages, Fermented Vinegar and Yeast; Ministry of Agriculture: Prague, Czech Republic, 2018. 14. Březinová, M. Beer Industry in the Czech Republic: Reasons for Founding a Craft Brewery. Sustainability 2021, 13, 9680. [Google Scholar] [CrossRef] 15. Lekjing, S.; Venkatachalam, K. Quality changes of HomChaiya rice beer during storage at two alternative temperatures. J. Biosci. Bioeng. 2022, 133, 369–374. [Google Scholar] [CrossRef] 16. Ferreira, I.M.; Freitas, F.; Pinheiro, S.; Mourão, M.F.; Guido, L.F.; da Silva, M.G. Impact of temperature during beer storage on beer chemical profile. LWT 2022, 154, 112688. [Google Scholar] [CrossRef] 17. Guido, L.F.; Curto, A.F.; Boivin, P.; Benismail, N.; Gonçalves, C.R.; Barros, A.A. Correlation of Malt Quality Parameters and Beer Flavor Stability: Multivariate Analysis. J. Agric. Food Chem. 2007, 55, 728–733. [Google Scholar] [CrossRef] 18. Vanderhaegen, B.; Delvaux, F.; Daenen, L.; Verachtert, H.; Delvaux, F.R. Aging characteristics of different beer types. Food Chem. 2007, 103, 404–412. [Google Scholar] [CrossRef] 19. Vanderhaegen, B.; Neven, H.; Verachtert, H.; Derdelinckx, G. The chemistry of beer aging—A critical review. Food Chem. 2006, 95, 357–381. [Google Scholar] [CrossRef] 20. EBC. European Brewery Convention Analytica–EBC; Fachverlag Hans Carl: Nürnberg, Germany, 2007. [Google Scholar] 21. Rübsam, H.; Gastl, M.; Becker, T. Influence of the range of molecular weight distribution of beer components on the intensity of palate fullness. Eur. Food Res. Technol. 2013, 236, 65–75. [Google Scholar] [CrossRef] 22. ISO 8586-1; Sensory Analysis–General Guidance for the Selection, Training and Monitoring of Assessors–Part 1: Selected Assessors. International Organization for Standardization: Geneva, Switzerland, 1993. 23. ISO 8589; Sensory Analysis–General Guidance for the Design of Test Rooms. International Organization for Standardization: Geneva, Switzerland, 2007. 24. Kuchel, L.; Brody, A.L.; Wicker, L. Oxygen and its reactions in beer. Packag. Technol. Sci. 2006, 19, 25–32. [Google Scholar] [CrossRef] 25. Paternoster, A.; Vanlanduit, S.; Springael, J.; Braet, J. Measurement and analysis of vibration and shock levels for truck transport in Belgium with respect to packaged beer during transit. Food Packag. Shelf Life 2018, 15, 134–143. [Google Scholar] [CrossRef] 26. Šulc, R.; Bojas, J. Beer foam decay: Effect of glass surface quality and CO2 content. EPJ Web Conf. 2018, 180, 02101. [Google Scholar] [CrossRef] 27. Guadalupe-Daqui, M.; MacIntosh, A.J. Rapid Beer Fermentation: The Effect of Vacuum Pressure on a Pilot Scale Lager Fermentation. J. Am. Soc. Brew. Chem. 2019, 77, 235–242. [Google Scholar] [CrossRef] 28. Calado, L.S.; Lacerda, A.L.F.; Fiaux, S.B.; Sphaier, L.A.; Silva, V.N.H.; Peixoto, F.C. Low-cost fluorescence-based method for beer bitterness measurement. J. Food Eng. 2019, 262, 9–12. [Google Scholar] [CrossRef] 29. Kemp, O.; Hofmann, S.; Braumann, I.; Jensen, S.; Fenton, A.; Oladokun, O. Changes in key hop-derived compounds and their impact on perceived dry-hop flavour in beers after storage at cold and ambient temperature. J. Inst. Brew. 2021, 127, 367–384. [Google Scholar] [CrossRef] 30. Jurić, A.; Ćorić, N.; Odak, A.; Herceg, Z.; Tišma, M. Analysis of total polyphenols, bitterness and haze in pale and dark lager beers produced under different mashing and boiling conditions. J. Inst. Brew. 2015, 121, 541–547. [Google Scholar] [CrossRef] 31. Floridi, S.; Montanari, L.; Marconi, O.; Fantozzi, P. Determination of Free Phenolic Acids in Wort and Beer by Coulometric Array Detection. J. Agric. Food Chem. 2003, 51, 1548–1554. [Google Scholar] [CrossRef] 32. Goiris, K.; Muylaert, K.; Voorspoels, S.; Noten, B.; De Paepe, D.; Baart, G.J.E.; De Cooman, L.; Posewitz, M. Detection of flavonoids in microalgae from different evolutionary lineages. J. Phycol. 2014, 50, 483–492. [Google Scholar] [CrossRef] 33. Habschied, K.; Lončarić, A.; Mastanjević, K. Screening of Polyphenols and Antioxidative Activity in Industrial Beers. Foods 2020, 9, 238. [Google Scholar] [CrossRef] 34. Steiner, E.; Becker, T.; Gastl, M. Turbidity and Haze Formation in Beer-Insights and Overview. J. Inst. Brew. 2010, 116, 360–368. [Google Scholar] [CrossRef] 35. Mastanjević, K.; Krstanović, V.; Lukinac, J.; Jukić, M.; Vulin, Z.; Mastanjević, K. Beer–The Importance of Colloidal Stability (Non-Biological Haze). Fermentation 2018, 4, 91. [Google Scholar] [CrossRef] 36. Caballero, I.; Blanco, C.A.; Porras, M. Iso-α-acids, bitterness and loss of beer quality during storage. Trends Food Sci. Technol. 2012, 26, 21–30. [Google Scholar] [CrossRef] 37. Breda, C.; Barros, A.I.; Gouvinhas, I. Characterization of bioactive compounds and antioxidant capacity of Portuguese craft beers. Int. J. Gastron. Food Sci. 2022, 27, 100473. [Google Scholar] [CrossRef] 38. Heuberger, A.L.; Broeckling, C.D.; Lewis, M.R.; Salazar, L.; Bouckaert, P.; Prenni, J.E. Metabolomic profiling of beer reveals effect of temperature on non-volatile small molecules during short-term storage. Food Chem. 2012, 135, 1284–1289. [Google Scholar] [CrossRef] 39. Mascia, I.; Fadda, C.; Karabín, M.; Dostálek, P.; del Caro, A. Aging of craft durum wheat beer fermented with sourdough yeasts. LWT 2016, 65, 487–494. [Google Scholar] [CrossRef]
utb.fulltext.sponsorship This study was kindly supported by the internal grant agency of Tomas Bata University in Zlín, Czech Republic (IGA/FT/2022/005) and funded by resources dedicated to specific university research.
utb.wos.affiliation [Salek, Richardos Nikolaos; Lorencova, Eva; Gal, Robert; Kurova, Vendula; Opustilova, Kristyna] Tomas Bata Univ Zlin, Fac Technol, Dept Food Technol, TG Masaryka 5555, Zlin 76001, Czech Republic; [Bunka, Frantisek] Univ Def, Fac Mil Leadership, Dept Logist, Lab Food Qual & Safety Res, Kounicova 65, Brno 66210, Czech Republic
utb.scopus.affiliation Department of Food Technology, Faculty of Technology, Tomas Bata University in Zlín, T.G. Masaryka 5555, Zlín, 760 01, Czech Republic; Laboratory of Food Quality and Safety Research, Department of Logistics, Faculty of Military Leadership, University of Defence, Kounicova 65, Brno, 662 10, Czech Republic
utb.fulltext.projects IGA/FT/2022/005
utb.fulltext.faculty Faculty of Technology
utb.fulltext.faculty Faculty of Technology
utb.fulltext.faculty Faculty of Technology
utb.fulltext.faculty Faculty of Technology
utb.fulltext.faculty Faculty of Technology
utb.fulltext.ou Department of Food Technology
utb.fulltext.ou Department of Food Technology
utb.fulltext.ou Department of Food Technology
utb.fulltext.ou Department of Food Technology
utb.fulltext.ou Department of Food Technology
Find Full text

Soubory tohoto záznamu

Zobrazit minimální záznam

Attribution 4.0 International Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je Attribution 4.0 International