Publikace UTB
Repozitář publikační činnosti UTB

Improvement of postharvest quality and bioactive compounds content of persimmon fruits after hydrocolloid-based edible coating application

Repozitář DSpace/Manakin

Zobrazit minimální záznam


dc.title Improvement of postharvest quality and bioactive compounds content of persimmon fruits after hydrocolloid-based edible coating application en
dc.contributor.author Saleem, Muhammad Shahzad
dc.contributor.author Ejaz, Shaghef
dc.contributor.author Anjum, Muhammad Akbar
dc.contributor.author Ali, Sajid
dc.contributor.author Hussain, Sajjad
dc.contributor.author Ercisli, Sezai
dc.contributor.author Ilhan, Gulce
dc.contributor.author Marc, Romina Alina
dc.contributor.author Škrovánková, Soňa
dc.contributor.author Mlček, Jiří
dc.relation.ispartof Horticulturae
dc.identifier.issn 2311-7524 Scopus Sources, Sherpa/RoMEO, JCR
dc.date.issued 2022
utb.relation.volume 8
utb.relation.issue 11
dc.type article
dc.language.iso en
dc.publisher MDPI
dc.identifier.doi 10.3390/horticulturae8111045
dc.relation.uri https://www.mdpi.com/2311-7524/8/11/1045
dc.relation.uri https://www.mdpi.com/2311-7524/8/11/1045/pdf?version=1667823649
dc.subject diospyros kaki thunb en
dc.subject persimmon fruits en
dc.subject hydrocolloid en
dc.subject edible coating en
dc.subject natural gum en
dc.subject TCG en
dc.subject fruit storage en
dc.description.abstract Persimmon fruits are often affected by large postharvest losses due to rapid ripening and the early onset of senescence. To reduce such losses in fresh fruits, the application of hydrocolloid-based edible coatings was conducted. Therefore, a plant hydrocolloid-based gum, tragacanth gum (TCG), was applied to persimmon fruits at 0.5%, 1%, and 1.5% TCG concentrations, and stored at 20 ± 2 °C and 80–85% relative humidity for 20 days (analysis at 0, 4th, 8th, 12th, 16th, and 20th day). As a result of TCG application on persimmon fruits, there were greatly suppressed respiration rates, ethylene production, weight loss, decay incidence, and H2O2 and malondialdehyde content. In addition, TCG-coated persimmon fruits had higher concentrations of bioactive compounds including phenols, flavonoids, carotenoids, ascorbic acid, and soluble tannin. Higher enzymatic antioxidant activities and lower softening enzyme activities were also recorded for TCG-coated persimmon fruits. Uncoated persimmon fruits quickly lost fruit quality attributes like color, firmness, taste, and aroma during storage compared to coated ones. Based on our findings, the use of TCG, especially at the concentration of 1% TCG, can be recommended to be applied as the edible coating to maintain the nutritional, biochemical, and commercial quality of persimmon fruits during ambient storage. © 2022 by the authors. en
utb.faculty Faculty of Technology
dc.identifier.uri http://hdl.handle.net/10563/1011268
utb.identifier.obdid 43883989
utb.identifier.scopus 2-s2.0-85141712188
utb.identifier.wok 000883486500001
utb.source j-scopus
dc.date.accessioned 2023-01-06T08:04:00Z
dc.date.available 2023-01-06T08:04:00Z
dc.description.sponsorship Tomas Bata University in Zlin, TBU: IGA/FT/2022/004
dc.description.sponsorship internal grant of Tomas Bata University in Zlin [IGA/FT/2022/004]
dc.rights Attribution 4.0 International
dc.rights.uri https://creativecommons.org/licenses/by/4.0/
dc.rights.access openAccess
utb.ou Department of Food Analysis and Chemistry
utb.contributor.internalauthor Škrovánková, Soňa
utb.contributor.internalauthor Mlček, Jiří
utb.fulltext.affiliation Muhammad Shahzad Saleem 1, Shaghef Ejaz 1,*, Muhammad Akbar Anjum 1 https://orcid.org/0000-0003-3483-345X , Sajid Ali 1 https://orcid.org/0000-0002-9745-2569 , Sajjad Hussain 1 https://orcid.org/0000-0002-7143-2754 , Sezai Ercisli 2 https://orcid.org/0000-0001-5006-5687 , Gulce Ilhan 2, Romina Alina Marc 3 https://orcid.org/0000-0002-6409-6019 , Sona Skrovankova 4,* https://orcid.org/0000-0003-2266-1646 and Jiri Mlcek 4 1 Department of Horticulture, Bahauddin Zakariya University, Multan 60800, Pakistan 2 Department of Horticulture, Faculty of Agriculture, Ataturk University, 25240 Erzurum, Turkey 3 Food Engineering Department, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania 4 Department of Food Analysis and Chemistry, Faculty of Technology, Tomas Bata University in Zlin, Vavreckova 5669, 76001 Zlin, Czech Republic * Correspondence: shaghef.ejaz@bzu.edu.pk (S.E.); skrovankova@utb.cz (S.S.); Tel.: +92-335-6683409 (S.E.); +420-576031524 (S.S.) * Authors to whom correspondence should be addressed.
utb.fulltext.dates Received: 7 October 2022 Revised: 28 October 2022 Accepted: 3 November 2022 Published: 7 November 2022
utb.fulltext.references 1. Denoya, G.I.; Pataro, G.; Ferrari, G. Effects of postharvest pulsed light treatments on the quality and antioxidant properties of persimmons during storage. Postharvest Biol. Technol. 2020, 160, 111055. [Google Scholar] [CrossRef] 2. Wang, H.; Chen, Y.; Lin, H.; Lin, M.; Chen, Y.; Lin, Y. 1-Methylcyclopropene containing-papers suppress the disassembly of cell wall polysaccharides in anxi persimmon fruit during storage. Int. J. Biol. Macromol. 2020, 151, 723–729. [Google Scholar] [CrossRef] [PubMed] 3. Plaza, L.; Colina, C.; De Ancos, B.; Sánchez-Moreno, C.; Pilar Cano, M. Influence of ripening and astringency on carotenoid content of high-pressure treated persimmon fruit (Diospyros kaki L.). Food Chem. 2012, 130, 591–597. [Google Scholar] [CrossRef] 4. Luo, Z. Effect of 1-methylcyclopropene on ripening of postharvest persimmon (Diospyros kaki L.) fruit. LWT Food Sci. Technol. 2007, 40, 285–291. [Google Scholar] [CrossRef] 5. Chen, Y.; Zhang, X.; Luo, Z.; Sun, J.; Li, L.; Yin, X.; Li, J.; Xu, Y. Effects of inside-out heat-shock via microwave on the fruit softening and quality of persimmon during postharvest storage. Food Chem. 2021, 349, 129161. [Google Scholar] [CrossRef] 6. Niazi, Z.; Razavi, F.; Khademi, O.; Aghdam, M.S. Exogenous Application of hydrogen sulfide and γ-aminobutyric acid alleviates chilling injury and preserves quality of persimmon fruit (Diospyros kaki, Cv. Karaj) during cold storage. Sci. Hortic. 2021, 285, 110198. [Google Scholar] [CrossRef] 7. Imahori, Y.; Bai, J.; Baldwin, E. Antioxidative responses of ripe tomato fruit to postharvest chilling and heating treatments. Sci. Hortic. 2016, 198, 398–406. [Google Scholar] [CrossRef] 8. Maringgal, B.; Hashim, N.; Mohamed Amin Tawakkal, I.S.; Muda Mohamed, M.T. Recent advance in edible coating and its effect on fresh/fresh-cut fruits quality. Trends Food Sci. Technol. 2020, 96, 253–267. [Google Scholar] [CrossRef] 9. Saha, A.; Tyagi, S.; Gupta, R.K.; Tyagi, Y.K. Natural gums of plant origin as edible coatings for food industry applications. Crit. Rev. Biotechnol. 2017, 37, 959–973. [Google Scholar] [CrossRef] 10. Ali, S.; Anjum, M.A.; Nawaz, A.; Naz, S.; Ejaz, S.; Sardar, H.; Saddiq, B. Tragacanth gum coating modulates oxidative stress and maintains quality of harvested apricot fruits. Int. J. Biol. Macromol. 2020, 163, 2439–2447. [Google Scholar] [CrossRef] 11. Khaliq, G.; Muda Mohamed, M.T.; Ghazali, H.M.; Ding, P.; Ali, A. Influence of gum arabic coating enriched with calcium chloride on physiological, biochemical and quality responses of mango (Mangifera indica L.) fruit stored under low temperature stress. Postharvest Biol. Technol. 2016, 111, 362–369. [Google Scholar] [CrossRef] 12. Saleem, M.S.; Ejaz, S.; Anjum, M.A.; Nawaz, A.; Naz, S.; Hussain, S.; Ali, S.; Canan, İ. Postharvest application of gum arabic edible coating delays ripening and maintains quality of persimmon fruits during storage. J. Food Process. Preserv. 2020, 44, e14583. [Google Scholar] [CrossRef] 13. Etemadipoor, R.; Mirzaalian Dastjerdi, A.; Ramezanian, A.; Ehteshami, S. Ameliorative effect of gum arabic, oleic acid and/or cinnamon essential oil on chilling injury and quality loss of guava fruit. Sci. Hortic. 2020, 266, 109255. [Google Scholar] [CrossRef] 14. Pasquariello, M.S.; Di Patre, D.; Mastrobuoni, F.; Zampella, L.; Scortichini, M.; Petriccione, M. Influence of postharvest chitosan treatment on enzymatic browning and antioxidant enzyme activity in sweet cherry fruit. Postharvest Biol. Technol. 2015, 109, 45–56. [Google Scholar] [CrossRef] 15. Gol, N.B.; Chaudhari, M.L.; Rao, T.V.R. Effect of edible coatings on quality and shelf life of carambola (Averrhoa carambola L.) fruit during storage. J. Food Sci. Technol. 2015, 52, 78–91. [Google Scholar] [CrossRef] 16. Shakir, M.S.; Ejaz, S.; Hussain, S.; Ali, S.; Sardar, H.; Azam, M.; Ullah, S.; Khaliq, G.; Saleem, M.S.; Nawaz, A.; et al. Synergistic effect of gum arabic and carboxymethyl cellulose as biocomposite coating delays senescence in stored tomatoes by regulating antioxidants and cell wall degradation. Int. J. Biol. Macromol. 2022, 201, 641–652. [Google Scholar] [CrossRef] 17. Mostafavi, F.S.; Kadkhodaee, R.; Emadzadeh, B.; Koocheki, A. Preparation and characterization of tragacanth-locust bean gum edible blend films. Carbohydr. Polym. 2016, 139, 20–27. [Google Scholar] [CrossRef] 18. Nazarzadeh Zare, E.; Makvandi, P.; Tay, F.R. Recent progress in the industrial and biomedical applications of tragacanth gum: A review. Carbohydr. Polym. 2019, 212, 450–467. [Google Scholar] [CrossRef] 19. Nasiri, M.; Barzegar, M.; Sahari, M.A.; Niakousari, M. Tragacanth gum containing zataria multiflora boiss. essential oil as a natural preservative for storage of button mushrooms (Agaricus bisporus). Food Hydrocoll. 2017, 72, 202–209. [Google Scholar] [CrossRef] 20. Ali, S.; Zahid, N.; Nawaz, A.; Naz, S.; Ejaz, S.; Ullah, S. Tragacanth Gum Coating Suppresses the Disassembly of Cell Wall Polysaccharides and Delays Softening of Harvested Mango (Mangifera indica L.) Fruit. Int. J. Biol. Macromol. 2022, 222, 521–532. [Google Scholar] [CrossRef] 21. Nasiri, M.; Barzegar, M.; Sahari, M.A.; Niakousari, M. Application of tragacanth gum impregnated with satureja khuzistanica essential oil as a natural coating for enhancement of postharvest quality and shelf life of button mushroom (Agaricus bisporus). Int. J. Biol. Macromol. 2018, 106, 218–226. [Google Scholar] [CrossRef] [PubMed] 22. Yang, H.; Wu, F.; Cheng, J. Reduced chilling injury in cucumber by nitric oxide and the antioxidant response. Food Chem. 2011, 127, 1237–1242. [Google Scholar] [CrossRef] [PubMed] 23. Zheng, X.; Tian, S. Effect of oxalic acid on control of postharvest browning of litchi Fruit. Food Chem. 2006, 96, 519–523. [Google Scholar] [CrossRef] 24. Velikova, V.; Loreto, F. On the relationship between isoprene emission and thermotolerance in phragmites australis leaves exposed to high temperatures and during the recovery from a heat stress. Plant Cell Environ. 2005, 28, 318–327. [Google Scholar] [CrossRef] 25. Ebrahimi, F.; Rastegar, S. Preservation of mango fruit with guar-based edible coatings enriched with spirulina platensis and aloe vera extract during storage at ambient temperature. Sci. Hortic. 2020, 265, 109258. [Google Scholar] [CrossRef] 26. Ali, S.; Khan, A.S.; Malik, A.U.; Shahid, M. Effect of controlled atmosphere storage on pericarp browning, bioactive compounds and antioxidant enzymes of litchi fruits. Food Chem. 2016, 206, 18–29. [Google Scholar] [CrossRef] 27. Taira, S. Astringency in Persimmon. In Modern Method of Plant Analysis, Fruit Analysis; Linskens, H.F., Jackson, J.F., Eds.; Springer: Berlin, Germany, 1996; pp. 97–110. [Google Scholar] 28. Nakano, Y.; Asada, K. Purification of ascorbate peroxidase in spinach chloroplasts; its inactivation in ascorbate-depleted medium and reactivation by monodehydroascorbate radical. Plant Cell Physiol. 1987, 28, 131–140. [Google Scholar] 29. Liu, D.; Zou, J.; Meng, Q.; Zou, J.; Jiang, W. Uptake and accumulation and oxidative stress in garlic (Allium sativum L.) under lead phytotoxicity. Ecotoxicology 2009, 18, 134–143. [Google Scholar] [CrossRef] 30. Bradford, M. A Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef] 31. Lichtenthaler, H.K. Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. Methods Enzymol. 1987, 148, 350–382. [Google Scholar] 32. Liu, K.; Liu, J.; Li, H.; Yuan, C.; Zhong, J.; Chen, Y. Influence of postharvest citric acid and chitosan coating treatment on ripening attributes and expression of cell wall related genes in cherimoya (Annona cherimola Mill.) fruit. Sci. Hortic. 2016, 198, 1–11. [Google Scholar] [CrossRef] 33. Awad, M.; Young, R.E. Postharvest variation in cellulase, polygalacturonase, and pectinmethylesterase in avocado (Persea americana Mill, cv. fuerte) fruits in relation to respiration and ethylene production. Plant Physiol. 1979, 64, 306–308. [Google Scholar] [CrossRef] 34. Yoshida, O.; Nakagawa, H.; Ogura, N.; Sato, T. Effect of heat treatment on the development of polygalacturonase activity in tomato fruit during ripening. Plant Cell Physiol. 1984, 25, 505–509. [Google Scholar] 35. Deng, Y.; Wu, Y.; Li, Y. Changes in firmness, cell wall composition and cell wall hydrolases of grapes stored in high oxygen atmospheres. Food Res. Int. 2005, 38, 769–776. [Google Scholar] [CrossRef] 36. Horwitz, W. Official and Tentative Methods of Analysis; Association of Official Analytical Chemists: Washington, DC, USA, 1960; pp. 314–320. [Google Scholar] 37. Khaliq, G.; Muda Mohamed, M.T.; Ali, A.; Ding, P.; Ghazali, H.M. Effect of gum arabic coating combined with calcium chloride on physico-chemical and qualitative properties of mango (Mangifera indica L.) fruit during low temperature storage. Sci. Hortic. 2015, 190, 187–194. [Google Scholar] [CrossRef] 38. Daisy, L.L.; Nduko, J.M.; Joseph, W.M.; Richard, S.M. Effect of edible gum arabic coating on the shelf life and quality of mangoes (Mangifera indica) during storage. J. Food Sci. Technol. 2020, 57, 79–85. [Google Scholar] [CrossRef] 39. Etemadipoor, R.; Ramezanian, A.; Mirzaalian Dastjerdi, A.; Shamili, M. The Potential of gum arabic enriched with cinnamon essential oil for improving the qualitative characteristics and storability of guava (Psidium guajava L.) Fruit. Sci. Hortic. 2019, 251, 101–107. [Google Scholar] [CrossRef] 40. Alali, A.A.; Awad, M.A.; Al-Qurashi, A.D.; Mohamed, S.A. Postharvest gum arabic and salicylic acid dipping affect quality and biochemical changes of ‘Grand Nain’ bananas during shelf Life. Sci. Hortic. 2018, 237, 51–58. [Google Scholar] [CrossRef] 41. Anjum, M.A.; Akram, H.; Zaidi, M.; Ali, S. Effect of gum arabic and aloe vera gel based edible coatings in combination with plant extracts on postharvest quality and storability of ‘Gola’ guava fruits. Sci. Hortic. 2020, 271, 109506. [Google Scholar] [CrossRef] 42. Tahir, H.E.; Xiaobo, Z.; Jiyong, S.; Mahunu, G.K.; Zhai, X.; Mariod, A.A. Quality and postharvest-shelf life of cold-stored strawberry fruit as affected by gum arabic (Acacia Senegal) edible coating. J. Food Biochem. 2018, 42, e12527. [Google Scholar] [CrossRef] 43. Dong, F.; Wang, X. Guar gum and ginseng extract coatings maintain the quality of sweet cherry. LWT Food Sci. Technol. 2018, 89, 117–122. [Google Scholar] [CrossRef] 44. Ali, S.; Anjum, M.A.; Nawaz, A.; Naz, S.; Ejaz, S.; Saleem, M.S.; Tul-Ain Haider, S.; Ul Hasan, M. Effect of gum arabic coating on antioxidative enzyme activities and quality of apricot (Prunus armeniaca L.) fruit during ambient storage. J. Food Biochem. 2021, 45, e13656. [Google Scholar] [CrossRef] [PubMed] 45. Saleem, M.S.; Ejaz, S.; Anjum, M.A.; Ali, S.; Hussain, S.; Nawaz, A.; Naz, S.; Maqbool, M.; Abbas, A.M. Aloe vera gel coating delays softening and maintains quality of stored persimmon (Diospyros kaki Thunb.) Fruits. J. Food Sci. Technol. 2022, 59, 3296–3306. [Google Scholar] [CrossRef] 46. Kumar, N.; Ojha, A.; Upadhyay, A.; Singh, R.; Kumar, S. Effect of active chitosan-pullulan composite edible coating enrich with pomegranate peel extract on the storage quality of green bell pepper. LWT 2021, 138, 110435. [Google Scholar] [CrossRef] 47. Hassan, B.; Chatha, S.A.S.; Hussain, A.I.; Zia, K.M.; Akhtar, N. Recent advances on polysaccharides, lipids and protein based edible films and coatings: A Review. Int. J. Biol. Macromol. 2018, 109, 1095–1107. [Google Scholar] [CrossRef] 48. Murmu, S.B.; Mishra, H.N. The effect of edible coating based on arabic gum, sodium caseinate and essential oil of cinnamon and lemon grass on guava. Food Chem. 2018, 245, 820–828. [Google Scholar] [CrossRef] 49. Khaliq, G.; Saleh, A.; Bugti, G.A.; Hakeem, K.R. Guggul gum incorporated with basil essential oil improves quality and modulates cell wall-degrading enzymes of jamun fruit during storage. Sci. Hortic. 2020, 273, 109608. [Google Scholar] [CrossRef] 50. Nasr, F.; Pateiro, M.; Rabiei, V.; Razzvi, F.; Formaneck, S.; Gohari, G.; Lorenzo, J.M. Chitosan-Phenylalanine Nanoparticles (Cs-Phe Nps) Extend the Postharvest Life of Persimmon (Diospyros Kaki) Fruits under Chilling Stress. Coatings 2021, 11, 819. [Google Scholar] [CrossRef] 51. Xue, J.; Huang, L.; Zhang, S.; Sun, H.; Gao, T. Study on the evaluation of carboxymethyl-chitosan concentration and temperature treatment on the quality of “Niuxin” persimmon during cold storage. J. Food Process. Preserv. 2020, 44, e14560. [Google Scholar] [CrossRef] 52. Saleem, M.S.; Anjum, M.A.; Naz, S.; Ali, S.; Hussain, S.; Azam, M.; Sardar, H.; Khaliq, G.; Canan, İ.; Ejaz, S. Incorporation of ascorbic acid in chitosan-based edible coating improves postharvest quality and storability of strawberry fruits. Int. J. Biol. Macromol. 2021, 189, 160–169. [Google Scholar] [CrossRef] 53. Kou, J.; Zhao, Z.; Wang, W.; Wei, C.; Guan, J.; Ference, C. Comparative study of ripening related gene expression and postharvest physiological changes between astringent and nonastringent persimmon cultivars. J. Am. Soc. Hortic. Sci. 2020, 145, 203–212. [Google Scholar] [CrossRef] 54. Kou, J.; Wei, C.; Zhao, Z.; Guan, J.; Wang, W. Effects of ethylene and 1-methylcyclopropene treatments on physiological changes and ripening-related gene expression of ‘Mopan’ persimmon fruit during storage. Postharvest Biol. Technol. 2020, 166, 111185. [Google Scholar] [CrossRef] 55. Sanchís, E.; González, S.; Ghidelli, C.; Sheth, C.C.; Mateos, M.; Palou, L.; Pérez-Gago, M.B. Browning inhibition and microbial control in fresh-cut persimmon (Diospyros kaki Thunb. Cv. Rojo Brillante) by apple pectin-based edible coatings. Postharvest Biol. Technol. 2016, 112, 186–193. [Google Scholar] [CrossRef] 56. Formiga, A.S.; Pinsetta, J.S.; Pereira, E.M.; Cordeiro, I.N.F.; Mattiuz, B.H. Use of edible coatings based on hydroxypropyl methylcellulose and beeswax in the conservation of red guava ‘Pedro Sato’. Food Chem. 2019, 290, 144–151. [Google Scholar] [CrossRef] 57. Sousa, F.F.; Pinsetta Junior, J.S.; Oliveira, K.T.E.F.; Rodrigues, E.C.N.; Andrade, J.P.; Mattiuz, B.H. Conservation of ‘Palmer’ mango with an edible coating of hydroxypropyl methylcellulose and beeswax. Food Chem. 2021, 346, 128925. [Google Scholar] [CrossRef] 58. Bignell, G.; Bruun, D.; Oag, D.; Nissen, B.; George, A. Persimmon Postharvest Manual, 2nd ed.; Department of Agriculture and Fisheries: Brisbane City, QLD, Australia, 2017. 59. Valero, D.; Díaz-Mula, H.M.; Zapata, P.J.; Guillén, F.; Martínez-Romero, D.; Castillo, S.; Serrano, M. Effects of alginate edible coating on preserving fruit quality in four plum cultivars during postharvest storage. Postharvest Biol. Technol. 2013, 77, 1–6. [Google Scholar] [CrossRef] 60. Batista-Silva, W.; Nascimento, V.L.; Medeiros, D.B.; Nunes-Nesi, A.; Ribeiro, D.M.; Zsögön, A.; Araújo, W.L. Modifications in organic acid profiles during fruit development and ripening: Correlation or causation? Front. Plant Sci. 2018, 9, 1689. [Google Scholar] [CrossRef]
utb.fulltext.sponsorship This work was supported by the internal grant of Tomas Bata University in Zlin (No. IGA/FT/2022/004).
utb.wos.affiliation [Saleem, Muhammad Shahzad; Ejaz, Shaghef; Anjum, Muhammad Akbar; Ali, Sajid; Hussain, Sajjad] Bahauddin Zakariya Univ, Dept Hort, Multan 60800, Pakistan; [Ercisli, Sezai; Ilhan, Gulce] Ataturk Univ, Fac Agr, Dept Hort, TR-25240 Erzurum, Turkey; [Marc, Romina Alina] Univ Agr Sci & Vet Med, Fac Food Sci & Technol, Food Engn Dept, Cluj Napoca 400372, Romania; [Skrovankova, Sona; Mlcek, Jiri] Tomas Bata Univ Zlin, Fac Technol, Dept Food Anal & Chem, Vavreckova 5669, Zlin 76001, Czech Republic
utb.scopus.affiliation Department of Horticulture, Bahauddin Zakariya University, Multan, 60800, Pakistan; Department of Horticulture, Faculty of Agriculture, Ataturk University, Erzurum, 25240, Turkey; Food Engineering Department, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, 400372, Romania; Department of Food Analysis and Chemistry, Faculty of Technology, Tomas Bata University in Zlin, Vavreckova 5669, Zlin, 76001, Czech Republic
utb.fulltext.projects IGA/FT/2022/004
utb.fulltext.faculty Faculty of Technology
utb.fulltext.ou Department of Food Analysis and Chemistry
Find Full text

Soubory tohoto záznamu

Zobrazit minimální záznam

Attribution 4.0 International Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je Attribution 4.0 International