Kontaktujte nás | Jazyk: čeština English
dc.title | Analyzing the effectiveness of the gaussian mixture model clustering algorithm in software enhancement effort estimation | en |
dc.contributor.author | Vo Van, Hai | |
dc.contributor.author | Ho, Le Thi Kim Nhung | |
dc.contributor.author | Prokopová, Zdenka | |
dc.contributor.author | Šilhavý, Radek | |
dc.contributor.author | Šilhavý, Petr | |
dc.relation.ispartof | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) | |
dc.identifier.issn | 0302-9743 Scopus Sources, Sherpa/RoMEO, JCR | |
dc.identifier.isbn | 978-3-03-121966-5 | |
dc.date.issued | 2022 | |
utb.relation.volume | 13758 LNAI | |
dc.citation.spage | 255 | |
dc.citation.epage | 268 | |
dc.event.title | 14th Asian Conference on Intelligent Information and Database Systems , ACIIDS 2022 | |
dc.event.location | Ho Chi Minh City | |
utb.event.state-en | Vietnam | |
utb.event.state-cs | Vietnam | |
dc.event.sdate | 2022-11-28 | |
dc.event.edate | 2022-11-30 | |
dc.type | conferenceObject | |
dc.language.iso | en | |
dc.publisher | Springer Science and Business Media Deutschland GmbH | |
dc.identifier.doi | 10.1007/978-3-031-21967-2_21 | |
dc.relation.uri | https://link.springer.com/chapter/10.1007/978-3-031-21967-2_21 | |
dc.subject | clustering algorithm | en |
dc.subject | function point analysis (FPA) | en |
dc.subject | Gaussian mixture model | en |
dc.subject | k-means | en |
dc.subject | machine learning | en |
dc.subject | software enhancement effort estimation | en |
dc.description.abstract | Background: The influence of data clustering on the effort estimating process has been studied extensively. Studies focus on partitioning and density-based clustering, and some use hierarchical clustering, but most focus on software development effort estimation. Aim: We focus on the Gaussian Mixture Model algorithm's effectiveness in the software enhancement effort estimation. Method: We used the Gaussian Mixture Model clustering algorithm to cluster the dataset into clusters and then applied the IFPUG FPA method for effort estimation on these clusters. The ISBSG dataset was used in this study. The number of clusters is determined using the Elbow method with the Distortion score. Besides, the k-means algorithm was also used as the comparative algorithm. The baseline model was determined by using the FPA method on the entire dataset without clustering. Result: With the number of clusters selected as 4, on six evaluation criteria, MAE, MAPE, RMSE, MBRE, and MIBRE, the experimental results show the estimated accuracy using the FPA method on clustered data significantly better when compared with no clustering. Conclusion: the software enhancement effort estimation can be significantly improved when using the Gaussian Mixture Model clustering algorithm. | en |
utb.faculty | Faculty of Applied Informatics | |
dc.identifier.uri | http://hdl.handle.net/10563/1011328 | |
utb.identifier.obdid | 43884096 | |
utb.identifier.scopus | 2-s2.0-85145257232 | |
utb.identifier.wok | 000916496900021 | |
utb.source | d-scopus | |
dc.date.accessioned | 2023-02-15T08:06:28Z | |
dc.date.available | 2023-02-15T08:06:28Z | |
dc.description.sponsorship | IGA/CebiaTech/2022/001, RVO/FAI/2021/002 | |
dc.description.sponsorship | Faculty of Applied Informatics, Tomas Bata University in Zlin [IGA/CebiaTech/2022/001, RVO/FAI/2021/002] | |
utb.ou | Department of Computer and Communication Systems | |
utb.contributor.internalauthor | Vo Van, Hai | |
utb.contributor.internalauthor | Ho, Le Thi Kim Nhung | |
utb.contributor.internalauthor | Prokopová, Zdenka | |
utb.contributor.internalauthor | Šilhavý, Radek | |
utb.contributor.internalauthor | Šilhavý, Petr | |
utb.fulltext.sponsorship | This work was supported by the Faculty of Applied Informatics, Tomas Bata University in Zlin, under project IGA/CebiaTech/2022/001 and under project RVO/FAI/2021/002. | |
utb.wos.affiliation | [Hai, Vo Van; Nhung, Ho Le Thi Kim; Prokopova, Zdenka; Silhavy, Radek; Silhavy, Petr] Tomas Bata Univ Zlin, Dept Comp & Commun Syst, Nam TGM 5555, Zlin 76001, Czech Republic | |
utb.scopus.affiliation | Department of Computer and Communication Systems, Tomas Bata University in Zlin, Nam. TGM 5555, Zlin, 76001, Czech Republic | |
utb.fulltext.projects | IGA/CebiaTech/2022/001 | |
utb.fulltext.projects | RVO/FAI/2021/002 |