Publikace UTB
Repozitář publikační činnosti UTB

Analyzing the effectiveness of the gaussian mixture model clustering algorithm in software enhancement effort estimation

Repozitář DSpace/Manakin

Zobrazit minimální záznam


dc.title Analyzing the effectiveness of the gaussian mixture model clustering algorithm in software enhancement effort estimation en
dc.contributor.author Vo Van, Hai
dc.contributor.author Ho, Le Thi Kim Nhung
dc.contributor.author Prokopová, Zdenka
dc.contributor.author Šilhavý, Radek
dc.contributor.author Šilhavý, Petr
dc.relation.ispartof Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
dc.identifier.issn 0302-9743 Scopus Sources, Sherpa/RoMEO, JCR
dc.identifier.isbn 978-3-03-121966-5
dc.date.issued 2022
utb.relation.volume 13758 LNAI
dc.citation.spage 255
dc.citation.epage 268
dc.event.title 14th Asian Conference on Intelligent Information and Database Systems , ACIIDS 2022
dc.event.location Ho Chi Minh City
utb.event.state-en Vietnam
utb.event.state-cs Vietnam
dc.event.sdate 2022-11-28
dc.event.edate 2022-11-30
dc.type conferenceObject
dc.language.iso en
dc.publisher Springer Science and Business Media Deutschland GmbH
dc.identifier.doi 10.1007/978-3-031-21967-2_21
dc.relation.uri https://link.springer.com/chapter/10.1007/978-3-031-21967-2_21
dc.subject clustering algorithm en
dc.subject function point analysis (FPA) en
dc.subject Gaussian mixture model en
dc.subject k-means en
dc.subject machine learning en
dc.subject software enhancement effort estimation en
dc.description.abstract Background: The influence of data clustering on the effort estimating process has been studied extensively. Studies focus on partitioning and density-based clustering, and some use hierarchical clustering, but most focus on software development effort estimation. Aim: We focus on the Gaussian Mixture Model algorithm's effectiveness in the software enhancement effort estimation. Method: We used the Gaussian Mixture Model clustering algorithm to cluster the dataset into clusters and then applied the IFPUG FPA method for effort estimation on these clusters. The ISBSG dataset was used in this study. The number of clusters is determined using the Elbow method with the Distortion score. Besides, the k-means algorithm was also used as the comparative algorithm. The baseline model was determined by using the FPA method on the entire dataset without clustering. Result: With the number of clusters selected as 4, on six evaluation criteria, MAE, MAPE, RMSE, MBRE, and MIBRE, the experimental results show the estimated accuracy using the FPA method on clustered data significantly better when compared with no clustering. Conclusion: the software enhancement effort estimation can be significantly improved when using the Gaussian Mixture Model clustering algorithm. en
utb.faculty Faculty of Applied Informatics
dc.identifier.uri http://hdl.handle.net/10563/1011328
utb.identifier.obdid 43884096
utb.identifier.scopus 2-s2.0-85145257232
utb.identifier.wok 000916496900021
utb.source d-scopus
dc.date.accessioned 2023-02-15T08:06:28Z
dc.date.available 2023-02-15T08:06:28Z
dc.description.sponsorship IGA/CebiaTech/2022/001, RVO/FAI/2021/002
dc.description.sponsorship Faculty of Applied Informatics, Tomas Bata University in Zlin [IGA/CebiaTech/2022/001, RVO/FAI/2021/002]
utb.ou Department of Computer and Communication Systems
utb.contributor.internalauthor Vo Van, Hai
utb.contributor.internalauthor Ho, Le Thi Kim Nhung
utb.contributor.internalauthor Prokopová, Zdenka
utb.contributor.internalauthor Šilhavý, Radek
utb.contributor.internalauthor Šilhavý, Petr
utb.fulltext.sponsorship This work was supported by the Faculty of Applied Informatics, Tomas Bata University in Zlin, under project IGA/CebiaTech/2022/001 and under project RVO/FAI/2021/002.
utb.wos.affiliation [Hai, Vo Van; Nhung, Ho Le Thi Kim; Prokopova, Zdenka; Silhavy, Radek; Silhavy, Petr] Tomas Bata Univ Zlin, Dept Comp & Commun Syst, Nam TGM 5555, Zlin 76001, Czech Republic
utb.scopus.affiliation Department of Computer and Communication Systems, Tomas Bata University in Zlin, Nam. TGM 5555, Zlin, 76001, Czech Republic
utb.fulltext.projects IGA/CebiaTech/2022/001
utb.fulltext.projects RVO/FAI/2021/002
Find Full text

Soubory tohoto záznamu

Zobrazit minimální záznam