Kontaktujte nás | Jazyk: čeština English
dc.title | High-speed videomicroscopy of sheared carbonyl iron suspensions | en |
dc.contributor.author | Martínez-Cano, Óscar | |
dc.contributor.author | Morillas, Jose R. | |
dc.contributor.author | Cvek, Martin | |
dc.contributor.author | Ramírez, Javier | |
dc.contributor.author | de Vicente, Juan | |
dc.relation.ispartof | Smart Materials and Structures | |
dc.identifier.issn | 0964-1726 Scopus Sources, Sherpa/RoMEO, JCR | |
dc.identifier.issn | 1361-665X Scopus Sources, Sherpa/RoMEO, JCR | |
dc.date.issued | 2023 | |
utb.relation.volume | 32 | |
utb.relation.issue | 2 | |
dc.type | article | |
dc.language.iso | en | |
dc.publisher | Institute of Physics | |
dc.identifier.doi | 10.1088/1361-665X/acaadc | |
dc.relation.uri | https://iopscience.iop.org/article/10.1088/1361-665X/acaadc | |
dc.relation.uri | https://iopscience.iop.org/article/10.1088/1361-665X/acaadc/pdf | |
dc.subject | magnetorheology | en |
dc.subject | Magnetorheological fluids | en |
dc.subject | flow-field superposition | en |
dc.subject | start-up | en |
dc.subject | layered pattern | en |
dc.subject | stripes | en |
dc.subject | Mason number | en |
dc.description.abstract | The postyield rheological regime is investigated in sheared magnetic field-responsive composites (i.e. carbonyl iron based magnetorheological fluids). When subjected to uniaxial DC fields, high-speed videomicroscopy techniques and dedicated image analysis tools demonstrate that dispersed magnetic microparticles self-assemble to form concentric layered patterns above a particular shear rate ( γ ˙ R ,c ). This critical shear rate for layer formation is dictated by a critical Mason number M n c ∼ 1 that is associated to the destruction of the last doublet in the chain-like aggregates. The number of layers, mean width, percentage of occupation and mean period are found to be very weakly dependent on the shear rate in start-up shearing flow tests. Experimental data for the mean period are in good agreement with an energy minimization theory. | en |
utb.faculty | University Institute | |
dc.identifier.uri | http://hdl.handle.net/10563/1011344 | |
utb.identifier.obdid | 43884650 | |
utb.identifier.scopus | 2-s2.0-85145657601 | |
utb.identifier.wok | 000905794400001 | |
utb.identifier.coden | SMSTE | |
utb.source | j-scopus | |
dc.date.accessioned | 2023-02-15T08:06:29Z | |
dc.date.available | 2023-02-15T08:06:29Z | |
dc.description.sponsorship | 101030666, RP/CPS/2022/007; Ministerstvo Školství, Mládeže a Tělovýchovy, MŠMT; Federación Española de Enfermedades Raras, FEDER; Ministerio de Ciencia e Innovación, MICINN: AE EQC2019-005529-P, PID2019-104883GB-I00, TED2021-129384B-C22; European Regional Development Fund, ERDF; Junta de Andalucía: A-FQM-396-UGR20, P18-FR-2465 | |
dc.description.sponsorship | ERDF; FEDER; MICINN [AE EQC2019-005529-P, PID2019-104883GB-I00, TED2021-129384B-C22]; Junta de Andalucia [P18-FR-2465, A-FQM-396-UGR20]; (EFST)-H2020-MSCA-IF-2020 fellowship [101030666]; MEYS of the Czech Republic [RP/CPS/2022/007] | |
utb.ou | Centre of Polymer Systems | |
utb.contributor.internalauthor | Cvek, Martin | |
utb.fulltext.affiliation | Óscar Martínez-Cano1, Jose R Morillas1, Martin Cvek2, Javier Ramírez3and Juan de Vicente1,∗ https://orcid.org/0000-0002-2833-2272 1 F2N2Lab, Magnetic Soft Matter Group and Excellence Research Unit ‘Modeling Nature’ (MNat), Department of Applied Physics, Faculty of Sciences, University of Granada, C/Fuentenueva s/n, 18071 Granada, Spain 2 Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín, tř. Tomáše Bati, 5678, 760 01 Zlín, Czech Republic 3 Department of Signal Theory Networking and Communications, School of Technology and Telecommunications Engineering, University of Granada, C/ Periodista Daniel Saucedo Aranda s/n, 18014 Granada, Spain E-mail: jvicente@ugr.es ∗ Author to whom any correspondence should be addressed. ORCID iD Juan de Vicente https://orcid.org/0000-0002-2833-2272 | |
utb.fulltext.dates | Received 29 June 2022 revised 5 December 2022 Accepted for publication 11 December 2022 Published 29 December 2022 | |
utb.fulltext.references | [1] Morillas J R and de Vicente J 2020 Magnetorheology: a review Soft Matter 16 9614–42 [2] Terkel M and de Vicente J 2021 Magnetorheology of exotic magnetic mesostructures generated under triaxial unsteady magnetic fields Smart Mater. Struct. 30 014005 [3] Volkova O, Cutillas S, Carletto P, Bossis G, Cebers A and Meunier A 1999 Flow-induced structures in magnetorheological suspensions J. Magn. Magn. Mater. 201 66–69 [4] Ruiz-López J A, Hidalgo-Alvarez R and de Vicente J 2017 Towards a universal master curve in magnetorheology Smart Mater. Struct. 26 4001 [5] Morillas J R and de Vicente J 2019 DEM and FEM simulations in magnetorheology: aggregation kinetics and yield stress in magnetorheological materials and their applications IET Inst. Eng. Technol. 58 19–38 [6] Cutillas S and Bossis G 1997 A comparison between flow-induced structures in electrorheological and magnetorheological fluids Europhys 40 465–70 [7] Cutillas S, Bossis G and Cebers A 1998 Flow-induced transition from cylindrical to layered patterns in magnetorheological suspensions Phys. Rev. Lett. 57 804 [8] Volkova O, Cutillas S and Bossis G 1999 Shear banded flows and nematic-to-isotropic transition in ER and MR fluids Phys. Rev. Lett. 82 233 [9] Volkova O, Bossis G, Carletto P and Cebers A 2001 Shear banded structures and nematic to isotropic transition in MR fluids Int. J. Mod. Phys. 15 878–85 [10] Cao J G, Huang J P and Zhou L W 2006 Structure of electrorheological fluids under an electric field and a shear flow: experiment and computer simulation J. Phys. Chem. 110 11635–9 [11] Wang Z, Shahrivar K and de Vicente J 2014 Creep and recovery experiments of magnetorheological fluids: experiments and simulations J. Rheol. 58 1725–50 [12] Lagger H G, Bierwisch C, Korvink J G and Moseler M 2014 Discrete element study of viscous flow in magnetorheological fluids Rheol. Acta 53 417–43 [13] Lagger H G, Breinlinger T, Korvink J G, Moseler M, Di Renzo A, Di Maio F and Bierwisch C 2015 Influence of hydrodynamic drag model on shear stress in the simulation of magnetorheological fluids J. Non-Newton. Fluid Mech. 218 16–26 [14] Henley S and Filisko F E 1999 Flow properties of electrorheological suspensions: an alternative model for ER activity J. Rheol. 43 1323–36 [15] Badamchizadeh M A and Aghagolzadeh A 2004 Comparative study of unsharp masking methods for image enhancement Proc. 3rd Int. Conf. on Image and Graphics pp 27–30 [16] Jun Z and Jinglu H 2008 Image segmentation based on 2D Otsu method with histogram analysis Comput. Syst. Sci. Eng. 6 105–8 [17] Rader C M and Maling G C 1967 What is the fast Fourier transform? Proc. IEEE 55 1664–74 [18] Promislow J H and Gast A P 1997 Low-energy suspension structure of a magnetorheological fluid Phys. Rev. E 56 642 [19] Vieira S L, Pompeo Neto L B and Arruda A C F 2000 Transient behavior of an electrorheological fluid in shear flow mode J. Rheol. 44 1139–49 [20] Morillas J R and de Vicente J 2019 Yielding behavior of model magnetorheological fluids Soft Matter 15 3330–42 [21] Klingenberg D J, Van Swol F and Zukoski C F 1991 The small shear rate response of electrorheological suspensions. II. Extension beyond the point–dipole limit J. Chem. Phys. 94 6170–8 [22] Laun H M, Schmidt G, Gabriel C and Kieburg C 2008 Reliable plate–plate MRF magnetorheometry based on validated radial magnetic flux density profile simulations Rheol. Acta 47 1049–59 [23] Vieira S L, Nakano M, Henley S, Filisko F E, Pompeo Neto L B and Arruda A C F 2001 Transient behavior of the microstructure of electrorheological fluids in shear flow mode Int. J. Mod. Phys. B 15 695–703 [24] Ulicny J C, Golden M A, Namuduri C S and Klingenberg D J 2005 Transient response of magnetorheological fluids: shear flow between concentric cylinders J. Rheol. 49 87 [25] Kittipoomwong D, Klingenberg D J, Shkel Y M, Morris J F and Ulicny J C 2008 Transient behavior of electrorheological fluids in shear flow J. Rheol. 52 225 | |
utb.fulltext.sponsorship | We acknowledge Álvaro González Rodríguez for preliminary tests on this Project. This work was supported by ERDF, FEDER, MICINN AE EQC2019-005529-P, PID2019-104883GB-I00 and TED2021-129384B-C22 Projects, Junta de Andalucía P18-FR-2465 and A-FQM-396-UGR20 Projects and (EFST)-H2020-MSCA-IF-2020 (Grant 101030666) fellowship. M C acknowledges the Project DKRVO (RP/CPS/2022/007) funded by the MEYS of the Czech Republic. | |
utb.wos.affiliation | [Martinez-Cano, Oscar; Morillas, Jose R.; de Vicente, Juan] Univ Granada, Fac Sci, Dept Appl Phys, F2N2Lab,Magnet Soft Matter Grp, C Fuentenueva S-N, Granada 18071, Spain; [Martinez-Cano, Oscar; Morillas, Jose R.; de Vicente, Juan] Univ Granada, Fac Sci, Dept Appl Phys, Excellence Res Unit Modeling Nat MNat, C Fuentenueva S-N, Granada 18071, Spain; [Cvek, Martin] Tomas Bata Univ Zlin, Univ Inst, Ctr Polymer Syst, Tr Tomase Bati 5678, Zlin 76001, Czech Republic; [Ramirez, Javier] Univ Granada, Sch Technol & Telecommun Engn, Dept Signal Theory Networking & Commun, C Periodista Daniel Saucedo Aranda S-N, Granada 18014, Spain | |
utb.scopus.affiliation | F2N2Lab, Magnetic Soft Matter Group and Excellence Research Unit ‘Modeling Nature’ (MNat), Department of Applied Physics, Faculty of Sciences, University of Granada, C/Fuentenueva s/n, Granada, 18071, Spain; Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín, tř. Tomáše Bati, 5678, Zlín, 760 01, Czech Republic; Department of Signal Theory Networking and Communications, School of Technology and Telecommunications Engineering, University of Granada, C/ Periodista Daniel Saucedo Aranda s/n, Granada, 18014, Spain | |
utb.fulltext.projects | EQC2019-005529-P | |
utb.fulltext.projects | PID2019-104883GB-I00 | |
utb.fulltext.projects | TED2021-129384B-C22 | |
utb.fulltext.projects | P18-FR-2465 | |
utb.fulltext.projects | A-FQM-396-UGR20 | |
utb.fulltext.projects | (EFST)-H2020-MSCA-IF-2020 | |
utb.fulltext.projects | RP/CPS/2022/007 | |
utb.fulltext.faculty | University Institute | |
utb.fulltext.ou | Centre of Polymer Systems |