Publikace UTB
Repozitář publikační činnosti UTB

High-speed videomicroscopy of sheared carbonyl iron suspensions

Repozitář DSpace/Manakin

Zobrazit minimální záznam


dc.title High-speed videomicroscopy of sheared carbonyl iron suspensions en
dc.contributor.author Martínez-Cano, Óscar
dc.contributor.author Morillas, Jose R.
dc.contributor.author Cvek, Martin
dc.contributor.author Ramírez, Javier
dc.contributor.author de Vicente, Juan
dc.relation.ispartof Smart Materials and Structures
dc.identifier.issn 0964-1726 Scopus Sources, Sherpa/RoMEO, JCR
dc.identifier.issn 1361-665X Scopus Sources, Sherpa/RoMEO, JCR
dc.date.issued 2023
utb.relation.volume 32
utb.relation.issue 2
dc.type article
dc.language.iso en
dc.publisher Institute of Physics
dc.identifier.doi 10.1088/1361-665X/acaadc
dc.relation.uri https://iopscience.iop.org/article/10.1088/1361-665X/acaadc
dc.relation.uri https://iopscience.iop.org/article/10.1088/1361-665X/acaadc/pdf
dc.subject magnetorheology en
dc.subject Magnetorheological fluids en
dc.subject flow-field superposition en
dc.subject start-up en
dc.subject layered pattern en
dc.subject stripes en
dc.subject Mason number en
dc.description.abstract The postyield rheological regime is investigated in sheared magnetic field-responsive composites (i.e. carbonyl iron based magnetorheological fluids). When subjected to uniaxial DC fields, high-speed videomicroscopy techniques and dedicated image analysis tools demonstrate that dispersed magnetic microparticles self-assemble to form concentric layered patterns above a particular shear rate ( γ ˙ R ,c ). This critical shear rate for layer formation is dictated by a critical Mason number M n c ∼ 1 that is associated to the destruction of the last doublet in the chain-like aggregates. The number of layers, mean width, percentage of occupation and mean period are found to be very weakly dependent on the shear rate in start-up shearing flow tests. Experimental data for the mean period are in good agreement with an energy minimization theory. en
utb.faculty University Institute
dc.identifier.uri http://hdl.handle.net/10563/1011344
utb.identifier.obdid 43884650
utb.identifier.scopus 2-s2.0-85145657601
utb.identifier.wok 000905794400001
utb.identifier.coden SMSTE
utb.source j-scopus
dc.date.accessioned 2023-02-15T08:06:29Z
dc.date.available 2023-02-15T08:06:29Z
dc.description.sponsorship 101030666, RP/CPS/2022/007; Ministerstvo Školství, Mládeže a Tělovýchovy, MŠMT; Federación Española de Enfermedades Raras, FEDER; Ministerio de Ciencia e Innovación, MICINN: AE EQC2019-005529-P, PID2019-104883GB-I00, TED2021-129384B-C22; European Regional Development Fund, ERDF; Junta de Andalucía: A-FQM-396-UGR20, P18-FR-2465
dc.description.sponsorship ERDF; FEDER; MICINN [AE EQC2019-005529-P, PID2019-104883GB-I00, TED2021-129384B-C22]; Junta de Andalucia [P18-FR-2465, A-FQM-396-UGR20]; (EFST)-H2020-MSCA-IF-2020 fellowship [101030666]; MEYS of the Czech Republic [RP/CPS/2022/007]
utb.ou Centre of Polymer Systems
utb.contributor.internalauthor Cvek, Martin
utb.fulltext.affiliation Óscar Martínez-Cano1, Jose R Morillas1, Martin Cvek2, Javier Ramírez3and Juan de Vicente1,∗ https://orcid.org/0000-0002-2833-2272 1 F2N2Lab, Magnetic Soft Matter Group and Excellence Research Unit ‘Modeling Nature’ (MNat), Department of Applied Physics, Faculty of Sciences, University of Granada, C/Fuentenueva s/n, 18071 Granada, Spain 2 Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín, tř. Tomáše Bati, 5678, 760 01 Zlín, Czech Republic 3 Department of Signal Theory Networking and Communications, School of Technology and Telecommunications Engineering, University of Granada, C/ Periodista Daniel Saucedo Aranda s/n, 18014 Granada, Spain E-mail: jvicente@ugr.es ∗ Author to whom any correspondence should be addressed. ORCID iD Juan de Vicente  https://orcid.org/0000-0002-2833-2272
utb.fulltext.dates Received 29 June 2022 revised 5 December 2022 Accepted for publication 11 December 2022 Published 29 December 2022
utb.fulltext.references [1] Morillas J R and de Vicente J 2020 Magnetorheology: a review Soft Matter 16 9614–42 [2] Terkel M and de Vicente J 2021 Magnetorheology of exotic magnetic mesostructures generated under triaxial unsteady magnetic fields Smart Mater. Struct. 30 014005 [3] Volkova O, Cutillas S, Carletto P, Bossis G, Cebers A and Meunier A 1999 Flow-induced structures in magnetorheological suspensions J. Magn. Magn. Mater. 201 66–69 [4] Ruiz-López J A, Hidalgo-Alvarez R and de Vicente J 2017 Towards a universal master curve in magnetorheology Smart Mater. Struct. 26 4001 [5] Morillas J R and de Vicente J 2019 DEM and FEM simulations in magnetorheology: aggregation kinetics and yield stress in magnetorheological materials and their applications IET Inst. Eng. Technol. 58 19–38 [6] Cutillas S and Bossis G 1997 A comparison between flow-induced structures in electrorheological and magnetorheological fluids Europhys 40 465–70 [7] Cutillas S, Bossis G and Cebers A 1998 Flow-induced transition from cylindrical to layered patterns in magnetorheological suspensions Phys. Rev. Lett. 57 804 [8] Volkova O, Cutillas S and Bossis G 1999 Shear banded flows and nematic-to-isotropic transition in ER and MR fluids Phys. Rev. Lett. 82 233 [9] Volkova O, Bossis G, Carletto P and Cebers A 2001 Shear banded structures and nematic to isotropic transition in MR fluids Int. J. Mod. Phys. 15 878–85 [10] Cao J G, Huang J P and Zhou L W 2006 Structure of electrorheological fluids under an electric field and a shear flow: experiment and computer simulation J. Phys. Chem. 110 11635–9 [11] Wang Z, Shahrivar K and de Vicente J 2014 Creep and recovery experiments of magnetorheological fluids: experiments and simulations J. Rheol. 58 1725–50 [12] Lagger H G, Bierwisch C, Korvink J G and Moseler M 2014 Discrete element study of viscous flow in magnetorheological fluids Rheol. Acta 53 417–43 [13] Lagger H G, Breinlinger T, Korvink J G, Moseler M, Di Renzo A, Di Maio F and Bierwisch C 2015 Influence of hydrodynamic drag model on shear stress in the simulation of magnetorheological fluids J. Non-Newton. Fluid Mech. 218 16–26 [14] Henley S and Filisko F E 1999 Flow properties of electrorheological suspensions: an alternative model for ER activity J. Rheol. 43 1323–36 [15] Badamchizadeh M A and Aghagolzadeh A 2004 Comparative study of unsharp masking methods for image enhancement Proc. 3rd Int. Conf. on Image and Graphics pp 27–30 [16] Jun Z and Jinglu H 2008 Image segmentation based on 2D Otsu method with histogram analysis Comput. Syst. Sci. Eng. 6 105–8 [17] Rader C M and Maling G C 1967 What is the fast Fourier transform? Proc. IEEE 55 1664–74 [18] Promislow J H and Gast A P 1997 Low-energy suspension structure of a magnetorheological fluid Phys. Rev. E 56 642 [19] Vieira S L, Pompeo Neto L B and Arruda A C F 2000 Transient behavior of an electrorheological fluid in shear flow mode J. Rheol. 44 1139–49 [20] Morillas J R and de Vicente J 2019 Yielding behavior of model magnetorheological fluids Soft Matter 15 3330–42 [21] Klingenberg D J, Van Swol F and Zukoski C F 1991 The small shear rate response of electrorheological suspensions. II. Extension beyond the point–dipole limit J. Chem. Phys. 94 6170–8 [22] Laun H M, Schmidt G, Gabriel C and Kieburg C 2008 Reliable plate–plate MRF magnetorheometry based on validated radial magnetic flux density profile simulations Rheol. Acta 47 1049–59 [23] Vieira S L, Nakano M, Henley S, Filisko F E, Pompeo Neto L B and Arruda A C F 2001 Transient behavior of the microstructure of electrorheological fluids in shear flow mode Int. J. Mod. Phys. B 15 695–703 [24] Ulicny J C, Golden M A, Namuduri C S and Klingenberg D J 2005 Transient response of magnetorheological fluids: shear flow between concentric cylinders J. Rheol. 49 87 [25] Kittipoomwong D, Klingenberg D J, Shkel Y M, Morris J F and Ulicny J C 2008 Transient behavior of electrorheological fluids in shear flow J. Rheol. 52 225
utb.fulltext.sponsorship We acknowledge Álvaro González Rodríguez for preliminary tests on this Project. This work was supported by ERDF, FEDER, MICINN AE EQC2019-005529-P, PID2019-104883GB-I00 and TED2021-129384B-C22 Projects, Junta de Andalucía P18-FR-2465 and A-FQM-396-UGR20 Projects and (EFST)-H2020-MSCA-IF-2020 (Grant 101030666) fellowship. M C acknowledges the Project DKRVO (RP/CPS/2022/007) funded by the MEYS of the Czech Republic.
utb.wos.affiliation [Martinez-Cano, Oscar; Morillas, Jose R.; de Vicente, Juan] Univ Granada, Fac Sci, Dept Appl Phys, F2N2Lab,Magnet Soft Matter Grp, C Fuentenueva S-N, Granada 18071, Spain; [Martinez-Cano, Oscar; Morillas, Jose R.; de Vicente, Juan] Univ Granada, Fac Sci, Dept Appl Phys, Excellence Res Unit Modeling Nat MNat, C Fuentenueva S-N, Granada 18071, Spain; [Cvek, Martin] Tomas Bata Univ Zlin, Univ Inst, Ctr Polymer Syst, Tr Tomase Bati 5678, Zlin 76001, Czech Republic; [Ramirez, Javier] Univ Granada, Sch Technol & Telecommun Engn, Dept Signal Theory Networking & Commun, C Periodista Daniel Saucedo Aranda S-N, Granada 18014, Spain
utb.scopus.affiliation F2N2Lab, Magnetic Soft Matter Group and Excellence Research Unit ‘Modeling Nature’ (MNat), Department of Applied Physics, Faculty of Sciences, University of Granada, C/Fuentenueva s/n, Granada, 18071, Spain; Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín, tř. Tomáše Bati, 5678, Zlín, 760 01, Czech Republic; Department of Signal Theory Networking and Communications, School of Technology and Telecommunications Engineering, University of Granada, C/ Periodista Daniel Saucedo Aranda s/n, Granada, 18014, Spain
utb.fulltext.projects EQC2019-005529-P
utb.fulltext.projects PID2019-104883GB-I00
utb.fulltext.projects TED2021-129384B-C22
utb.fulltext.projects P18-FR-2465
utb.fulltext.projects A-FQM-396-UGR20
utb.fulltext.projects (EFST)-H2020-MSCA-IF-2020
utb.fulltext.projects RP/CPS/2022/007
utb.fulltext.faculty University Institute
utb.fulltext.ou Centre of Polymer Systems
Find Full text

Soubory tohoto záznamu

Zobrazit minimální záznam