Kontaktujte nás | Jazyk: čeština English
dc.title | Constructing a cryptocurrency-price prediction model using deep learning | en |
dc.contributor.author | Tran, Toai Kim | |
dc.contributor.author | Le, Thanh Thi Tuyet | |
dc.contributor.author | Bui, Thinh Tien | |
dc.contributor.author | Dang, Vang Quang | |
dc.contributor.author | Šenkeřík, Roman | |
dc.relation.ispartof | 8th International Conference on Engineering and Emerging Technologies, ICEET 2022 | |
dc.identifier.issn | 2831-3682 Scopus Sources, Sherpa/RoMEO, JCR | |
dc.identifier.issn | 2409-2983 Scopus Sources, Sherpa/RoMEO, JCR | |
dc.identifier.isbn | 978-1-6654-9106-8 | |
dc.date.issued | 2022 | |
dc.event.title | 8th International Conference on Engineering and Emerging Technologies, ICEET 2022 | |
dc.event.location | Kuala Lumpur | |
utb.event.state-en | Malaysia | |
utb.event.state-cs | Malajsie | |
dc.event.sdate | 2022-10-27 | |
dc.event.edate | 2022-10-28 | |
dc.type | conferenceObject | |
dc.language.iso | en | |
dc.publisher | Institute of Electrical and Electronics Engineers Inc. | |
dc.identifier.doi | 10.1109/ICEET56468.2022.10007138 | |
dc.relation.uri | https://ieeexplore.ieee.org/document/10007138 | |
dc.relation.uri | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10007138 | |
dc.subject | cryptocurrency | en |
dc.subject | deep learning | en |
dc.subject | machine learning | en |
dc.description.abstract | The purpose of this study is to discover the optimal Deep Learning model for Bitcoin prediction among the Convolutional Neural Network (CNN), Recurrent Neural Network (RNN), and Long Short-Term Memory (LSTM). Our empirical results indicate that LSTM is the optimal model for predicting Bitcoin price and trend with the prediction accuracy of 88.9%. Our study serves as a stepping stone for novice cryptocurrency investors and future studies of more advanced and sophisticated algorithms. Finally, given that the ideal model for predicting the price of cryptocurrencies is still a topic of controversy, the findings of this study will serve as a valuable empirical resource for future studies. © 2022 IEEE. | en |
utb.faculty | Faculty of Applied Informatics | |
dc.identifier.uri | http://hdl.handle.net/10563/1011371 | |
utb.identifier.obdid | 43884456 | |
utb.identifier.scopus | 2-s2.0-85146886476 | |
utb.source | d-scopus | |
dc.date.accessioned | 2023-02-17T00:08:30Z | |
dc.date.available | 2023-02-17T00:08:30Z | |
utb.contributor.internalauthor | Šenkeřík, Roman | |
utb.fulltext.sponsorship | - | |
utb.scopus.affiliation | Ho Chi Minh City University of Technology and Education, Faculty of Economics, No 1 Vo Van Ngan Street, Linh Chieu Ward, Thu Duc City, Viet Nam; VSB-Technical University of Ostrava, Faculty of Electrical Engineering and Computer Science, Dept. of Computer Science, 17. Listopadu 2172/15, Ostrava-Poruba, 708 00, Czech Republic; Tomas Bata University in Zlin, Faculty of Applied Informatics, T. G. Masaryka 5555, Zlin, 76001, Czech Republic | |
utb.fulltext.projects | - |