Publikace UTB
Repozitář publikační činnosti UTB

ARIMA for short-term and LSTM for long-term in daily Bitcoin price prediction

Repozitář DSpace/Manakin

Zobrazit minimální záznam


dc.title ARIMA for short-term and LSTM for long-term in daily Bitcoin price prediction en
dc.contributor.author Toai, Tran Kim
dc.contributor.author Šenkeřík, Roman
dc.contributor.author Zelinka, Ivan
dc.contributor.author Ulrich, Adam
dc.contributor.author Hanh, Vo Thi Xuan
dc.contributor.author Huan, Vo Minh
dc.relation.ispartof Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
dc.identifier.issn 0302-9743 Scopus Sources, Sherpa/RoMEO, JCR
dc.identifier.isbn 978-3-031-23491-0
dc.date.issued 2023
utb.relation.volume 13588 LNAI
dc.citation.spage 131
dc.citation.epage 143
dc.event.title 21st International Conference on Artificial Intelligence and Soft Computing, ICAISC 2022
dc.event.location Zakopane
utb.event.state-en Poland
utb.event.state-cs Polsko
dc.event.sdate 2022-06-19
dc.event.edate 2022-06-23
dc.type conferenceObject
dc.language.iso en
dc.publisher Springer Science and Business Media Deutschland GmbH
dc.identifier.doi 10.1007/978-3-031-23492-7_12
dc.relation.uri https://link.springer.com/chapter/10.1007/978-3-031-23492-7_12
dc.subject ARIMA en
dc.subject SVM en
dc.subject LSTM en
dc.subject Hybrid models en
dc.subject Bitcoin prediction en
dc.description.abstract The goal of this paper is the insight into the forecasting of Bitcoin price using machine learning models like AutoRegressive Integrated Moving Average (ARIMA), Support vector machines (SVM), hybrid ARIMA-SVM, and Long short-term memory (LSTM). Depending on the different types of data and the period, various models are used for prediction. A single model may be the best fit in the short term but may not be the best in long-term series data. Thus, using only a single model may not be suitable for forecasting time series data that depends on data sampling length and prediction time, and the type of specific applications. As a result, the ARIMA model produces better error results with a short prediction period or a small data set. In contrast, the Hybrid ARIMA-SVM model will help improve the performance of the ARIMA model when predicting over a long period, specifically 7 and 30 days for Bitcoin price prediction used in this research paper. The paper aims to compare traditional models such as the ARIMA, the Hybrid ARIMA-SVM, and deep learning models such as LSTM on a specific cryptocurrency prediction task using different scenarios. en
utb.faculty Faculty of Applied Informatics
dc.identifier.uri http://hdl.handle.net/10563/1011427
utb.identifier.obdid 43884987
utb.identifier.scopus 2-s2.0-85148110481
utb.identifier.wok 000972696000012
utb.source d-scopus
dc.date.accessioned 2023-03-15T07:46:14Z
dc.date.available 2023-03-15T07:46:14Z
dc.description.sponsorship IGA/CebiaTech/2022/001; Vysoká Škola Bánská - Technická Univerzita Ostrava
dc.description.sponsorship VSB-Technical University of Ostrava, Czech Republic [SP2022/22]; Internal Grant Agency of Tomas Bata University [IGA/CebiaTech/2022/001]
utb.contributor.internalauthor Šenkeřík, Roman
utb.contributor.internalauthor Ulrich, Adam
utb.fulltext.sponsorship Supported by grant of SGS No. SP2022/22, VSB-Technical University of Ostrava, Czech Republic, by Internal Grant Agency of Tomas Bata University under the project no. IGA/CebiaTech/2022/001, and further by the resources of A.I.Lab at the Faculty of Applied Informatics, Tomas Bata University in Zlin.
utb.wos.affiliation [Tran Kim Toai; Vo Thi Xuan Hanh; Vo Minh Huan] Ho Chi Minh Univ Technol Educ, Linh Chieu Ward, 1 Vo Van Ngan St, Thu Duc City, Vietnam; [Senkerik, Roman; Ulrich, Adam] Tomas Bata Univ Zlin, Fac Appl Informat, TG Masaryka 5555, Zlin 76001, Czech Republic; [Zelinka, Ivan] VSB Tech Univ Ostrava, Dept Comp Sci, Fac Elect Engn & Comp Sci, 17 Listopadu 2172-15, Ostrava 70800, Czech Republic
utb.scopus.affiliation Ho Chi Minh University of Technology Education, No 1 Vo Van Ngan Street, Linh Chieu Ward, Thu Duc City, Viet Nam; Faculty of Applied Informatics, Tomas Bata University in Zlin, T. G. Masaryka 5555, Zlin, 760 01, Czech Republic; Department of Computer Science, Faculty of Electrical Engineering and Computer Science, VSB-Technical University of Ostrava, 17. Listopadu 2172/15, Ostrava-Poruba, 708 00, Czech Republic
utb.fulltext.projects SP2022/22
utb.fulltext.projects IGA/CebiaTech/2022/001
Find Full text

Soubory tohoto záznamu

Zobrazit minimální záznam