Kontaktujte nás | Jazyk: čeština English
dc.title | ARIMA for short-term and LSTM for long-term in daily Bitcoin price prediction | en |
dc.contributor.author | Toai, Tran Kim | |
dc.contributor.author | Šenkeřík, Roman | |
dc.contributor.author | Zelinka, Ivan | |
dc.contributor.author | Ulrich, Adam | |
dc.contributor.author | Hanh, Vo Thi Xuan | |
dc.contributor.author | Huan, Vo Minh | |
dc.relation.ispartof | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) | |
dc.identifier.issn | 0302-9743 Scopus Sources, Sherpa/RoMEO, JCR | |
dc.identifier.isbn | 978-3-031-23491-0 | |
dc.date.issued | 2023 | |
utb.relation.volume | 13588 LNAI | |
dc.citation.spage | 131 | |
dc.citation.epage | 143 | |
dc.event.title | 21st International Conference on Artificial Intelligence and Soft Computing, ICAISC 2022 | |
dc.event.location | Zakopane | |
utb.event.state-en | Poland | |
utb.event.state-cs | Polsko | |
dc.event.sdate | 2022-06-19 | |
dc.event.edate | 2022-06-23 | |
dc.type | conferenceObject | |
dc.language.iso | en | |
dc.publisher | Springer Science and Business Media Deutschland GmbH | |
dc.identifier.doi | 10.1007/978-3-031-23492-7_12 | |
dc.relation.uri | https://link.springer.com/chapter/10.1007/978-3-031-23492-7_12 | |
dc.subject | ARIMA | en |
dc.subject | SVM | en |
dc.subject | LSTM | en |
dc.subject | Hybrid models | en |
dc.subject | Bitcoin prediction | en |
dc.description.abstract | The goal of this paper is the insight into the forecasting of Bitcoin price using machine learning models like AutoRegressive Integrated Moving Average (ARIMA), Support vector machines (SVM), hybrid ARIMA-SVM, and Long short-term memory (LSTM). Depending on the different types of data and the period, various models are used for prediction. A single model may be the best fit in the short term but may not be the best in long-term series data. Thus, using only a single model may not be suitable for forecasting time series data that depends on data sampling length and prediction time, and the type of specific applications. As a result, the ARIMA model produces better error results with a short prediction period or a small data set. In contrast, the Hybrid ARIMA-SVM model will help improve the performance of the ARIMA model when predicting over a long period, specifically 7 and 30 days for Bitcoin price prediction used in this research paper. The paper aims to compare traditional models such as the ARIMA, the Hybrid ARIMA-SVM, and deep learning models such as LSTM on a specific cryptocurrency prediction task using different scenarios. | en |
utb.faculty | Faculty of Applied Informatics | |
dc.identifier.uri | http://hdl.handle.net/10563/1011427 | |
utb.identifier.obdid | 43884987 | |
utb.identifier.scopus | 2-s2.0-85148110481 | |
utb.identifier.wok | 000972696000012 | |
utb.source | d-scopus | |
dc.date.accessioned | 2023-03-15T07:46:14Z | |
dc.date.available | 2023-03-15T07:46:14Z | |
dc.description.sponsorship | IGA/CebiaTech/2022/001; Vysoká Škola Bánská - Technická Univerzita Ostrava | |
dc.description.sponsorship | VSB-Technical University of Ostrava, Czech Republic [SP2022/22]; Internal Grant Agency of Tomas Bata University [IGA/CebiaTech/2022/001] | |
utb.contributor.internalauthor | Šenkeřík, Roman | |
utb.contributor.internalauthor | Ulrich, Adam | |
utb.fulltext.sponsorship | Supported by grant of SGS No. SP2022/22, VSB-Technical University of Ostrava, Czech Republic, by Internal Grant Agency of Tomas Bata University under the project no. IGA/CebiaTech/2022/001, and further by the resources of A.I.Lab at the Faculty of Applied Informatics, Tomas Bata University in Zlin. | |
utb.wos.affiliation | [Tran Kim Toai; Vo Thi Xuan Hanh; Vo Minh Huan] Ho Chi Minh Univ Technol Educ, Linh Chieu Ward, 1 Vo Van Ngan St, Thu Duc City, Vietnam; [Senkerik, Roman; Ulrich, Adam] Tomas Bata Univ Zlin, Fac Appl Informat, TG Masaryka 5555, Zlin 76001, Czech Republic; [Zelinka, Ivan] VSB Tech Univ Ostrava, Dept Comp Sci, Fac Elect Engn & Comp Sci, 17 Listopadu 2172-15, Ostrava 70800, Czech Republic | |
utb.scopus.affiliation | Ho Chi Minh University of Technology Education, No 1 Vo Van Ngan Street, Linh Chieu Ward, Thu Duc City, Viet Nam; Faculty of Applied Informatics, Tomas Bata University in Zlin, T. G. Masaryka 5555, Zlin, 760 01, Czech Republic; Department of Computer Science, Faculty of Electrical Engineering and Computer Science, VSB-Technical University of Ostrava, 17. Listopadu 2172/15, Ostrava-Poruba, 708 00, Czech Republic | |
utb.fulltext.projects | SP2022/22 | |
utb.fulltext.projects | IGA/CebiaTech/2022/001 |