Publikace UTB
Repozitář publikační činnosti UTB

On the software projects' duration estimation using support vector regression

Repozitář DSpace/Manakin

Zobrazit minimální záznam


dc.title On the software projects' duration estimation using support vector regression en
dc.contributor.author Vo Van, Hai
dc.contributor.author Javed, Mohsin
dc.contributor.author Abbas, Zuhair
dc.contributor.author Czyz, Meryem
dc.contributor.author Bílá, Michaela
dc.relation.ispartof Lecture Notes in Networks and Systems
dc.identifier.issn 2367-3370 Scopus Sources, Sherpa/RoMEO, JCR
dc.identifier.isbn 978-3-031-21434-9
dc.date.issued 2023
utb.relation.volume 596 LNNS
dc.citation.spage 288
dc.citation.epage 298
dc.event.title 6th Computational Methods in Systems and Software, CoMeSySo 2022
dc.event.location online
dc.event.sdate 2022-10-10
dc.event.edate 2022-10-15
dc.type conferenceObject
dc.language.iso en
dc.publisher Springer Science and Business Media Deutschland GmbH
dc.identifier.doi 10.1007/978-3-031-21435-6_25
dc.relation.uri https://link.springer.com/chapter/10.1007/978-3-031-21435-6_25
dc.subject machine learning en
dc.subject multiple linear regression en
dc.subject software duration estimation en
dc.subject support vector regression en
dc.description.abstract Estimating the project’s duration is one of the critical steps in helping to ensure project success. It helps to allocate resources and personnel appropriately during project development. This study aims to look for a more suitable algorithm between two selected algorithms for estimating project duration. Two machine learning algorithms, Multiple Linear Regression and Support Vector Regression, were used to estimate the project’s duration. The data used here is an ISBSG dataset with intelligent preprocessing to give an ideal fit to the algorithm used. The dependent variables used in the test are project size, maximum team size, and resource level. With the two algorithms selected, the estimated value of the project's duration is relatively close to the actual duration of the project. Through the six evaluation criteria, R-square, MAE, MAPE, RMSE, MBRE, MIBRE and the pair-wise t-test statistical method, the Support Vector Regression algorithm gives a much better estimate of the project's duration than the Multiple Linear Regression algorithm. © 2023, The Author(s), under exclusive license to Springer Nature Switzerland AG. en
utb.faculty Faculty of Applied Informatics
utb.faculty Faculty of Management and Economics
utb.faculty Faculty of Humanities
dc.identifier.uri http://hdl.handle.net/10563/1011429
utb.identifier.obdid 43884644
utb.identifier.scopus 2-s2.0-85148041068
utb.source d-scopus
dc.date.accessioned 2023-03-15T07:46:34Z
dc.date.available 2023-03-15T07:46:34Z
dc.description.sponsorship IGA-K-TRINITY/005; Univerzita Tomáše Bati ve Zlíně: IGA/CebiaTech/2022/001
utb.contributor.internalauthor Vo Van, Hai
utb.contributor.internalauthor Javed, Mohsin
utb.contributor.internalauthor Abbas, Zuhair
utb.contributor.internalauthor Czyz, Meryem
utb.contributor.internalauthor Bílá, Michaela
utb.fulltext.sponsorship This work was supported by Tomas Bata University in Zlín under the project no. IGA/CebiaTech/2022/001, and by Trinity Bank funding under the project no. IGA-K-TRINITY/005.
utb.scopus.affiliation FAI, Tomas Bata University, Nad Stráněmi 4511, Zlín, 76005, Czech Republic; FAME, Tomas Bata University, Mostní 5139, Zlín, 76001, Czech Republic; FHS, Tomas Bata University, Štefánikova 5670, Zlín, 76001, Czech Republic
utb.fulltext.projects IGA/CebiaTech/2022/001
utb.fulltext.projects IGA-K-TRINITY/005
Find Full text

Soubory tohoto záznamu

Zobrazit minimální záznam