Publikace UTB
Repozitář publikační činnosti UTB

ICIP 2022 Challenge: PEDCMI, TOOD enhanced by slicing-aided fine-tuning and inference

Repozitář DSpace/Manakin

Zobrazit minimální záznam


dc.title ICIP 2022 Challenge: PEDCMI, TOOD enhanced by slicing-aided fine-tuning and inference en
dc.contributor.author Turečková, Alžběta
dc.contributor.author Tureček, Tomáš
dc.contributor.author Komínková Oplatková, Zuzana
dc.relation.ispartof Proceedings - International Conference on Image Processing, ICIP
dc.identifier.issn 1522-4880 Scopus Sources, Sherpa/RoMEO, JCR
dc.date.issued 2022
dc.citation.spage 4292
dc.citation.epage 4295
dc.event.title 29th IEEE International Conference on Image Processing, ICIP 2022
dc.event.location Bordeaux
utb.event.state-en France
utb.event.state-cs Francie
dc.event.sdate 2022-10-16
dc.event.edate 2022-10-19
dc.type conferenceObject
dc.language.iso en
dc.publisher IEEE Computer Society
dc.identifier.doi 10.1109/ICIP46576.2022.9897826
dc.relation.uri https://ieeexplore.ieee.org/document/9897826
dc.relation.uri https://ieeexplore.ieee.org/ielx7/9897158/9897159/09897826.pdf?tag=1
dc.subject deep learning pipeline en
dc.subject object detection en
dc.subject TOOD en
dc.subject slicing aided inference en
dc.description.abstract This paper describes the approach for the Parasitic Egg Detection and Classification in Microscopic Images challenge. Our solution relies on a robust deep learning pipeline implementing a five-fold training schema to pursue the challenge goal. The final methodology utilizes the TOOD model, further enhanced by slicing-aided fine-tuning and inference. The slicing helps to overcome the image size invariability of the dataset and allows the model to access all images in high resolution, and consequently helps it learn detailed features needed to distinguish different classes and find a precise object position. Our results demonstrate the importance of proper data analysis and consequent pre and post-processing to improve prediction performance. en
utb.faculty Faculty of Applied Informatics
dc.identifier.uri http://hdl.handle.net/10563/1011440
utb.identifier.obdid 43884131
utb.identifier.scopus 2-s2.0-85148893664
utb.identifier.wok 001058109504073
utb.source d-scopus
dc.date.accessioned 2023-03-20T08:32:11Z
dc.date.available 2023-03-20T08:32:11Z
dc.description.sponsorship CZ LM2018140; IGA/CebiaTech/2022/001; Ministerstvo Školství, Mládeže a Tělovýchovy, MŠMT
dc.description.sponsorship Internal Grant Agency of Tomas Bata University [IGA/CebiaTech/2022/001]; project "e-Infrastruktura CZ" - Ministry of Education, Youth and Sports of the Czech Republic [e-INFRA CZ LM2018140]
utb.contributor.internalauthor Turečková, Alžběta
utb.contributor.internalauthor Tureček, Tomáš
utb.contributor.internalauthor Komínková Oplatková, Zuzana
utb.fulltext.sponsorship This work was supported by Internal Grant Agency of Tomas Bata University under the project no. IGA/CebiaTech/2022/001, and further by the resources of A.I.Lab at the Faculty of Applied Informatics, Tomas Bata University in Zlin. Computational resources were partly supplied also by the project ”e-Infrastruktura CZ” (e-INFRA CZ LM2018140) supported by the Ministry of Education, Youth and Sports of the Czech Republic.
utb.wos.affiliation [Tureckova, Alzbeta; Turecek, Tomas; Oplatkova, Zuzana Kominkova] Tomas Bata Univ Zlin, Fac Appl Informat, Nam TG Masaryka 5555, Zlin 76001, Czech Republic
utb.scopus.affiliation Tomas Bata University in Zlin, Faculty of Applied Informatics, Nam. T. G. Masaryka 5555, Zlin, 76001, Czech Republic
utb.fulltext.projects IGA/CebiaTech/2022/001
utb.fulltext.projects LM2018140
Find Full text

Soubory tohoto záznamu

Zobrazit minimální záznam