Kontaktujte nás | Jazyk: čeština English
dc.title | ICIP 2022 Challenge: PEDCMI, TOOD enhanced by slicing-aided fine-tuning and inference | en |
dc.contributor.author | Turečková, Alžběta | |
dc.contributor.author | Tureček, Tomáš | |
dc.contributor.author | Komínková Oplatková, Zuzana | |
dc.relation.ispartof | Proceedings - International Conference on Image Processing, ICIP | |
dc.identifier.issn | 1522-4880 Scopus Sources, Sherpa/RoMEO, JCR | |
dc.date.issued | 2022 | |
dc.citation.spage | 4292 | |
dc.citation.epage | 4295 | |
dc.event.title | 29th IEEE International Conference on Image Processing, ICIP 2022 | |
dc.event.location | Bordeaux | |
utb.event.state-en | France | |
utb.event.state-cs | Francie | |
dc.event.sdate | 2022-10-16 | |
dc.event.edate | 2022-10-19 | |
dc.type | conferenceObject | |
dc.language.iso | en | |
dc.publisher | IEEE Computer Society | |
dc.identifier.doi | 10.1109/ICIP46576.2022.9897826 | |
dc.relation.uri | https://ieeexplore.ieee.org/document/9897826 | |
dc.relation.uri | https://ieeexplore.ieee.org/ielx7/9897158/9897159/09897826.pdf?tag=1 | |
dc.subject | deep learning pipeline | en |
dc.subject | object detection | en |
dc.subject | TOOD | en |
dc.subject | slicing aided inference | en |
dc.description.abstract | This paper describes the approach for the Parasitic Egg Detection and Classification in Microscopic Images challenge. Our solution relies on a robust deep learning pipeline implementing a five-fold training schema to pursue the challenge goal. The final methodology utilizes the TOOD model, further enhanced by slicing-aided fine-tuning and inference. The slicing helps to overcome the image size invariability of the dataset and allows the model to access all images in high resolution, and consequently helps it learn detailed features needed to distinguish different classes and find a precise object position. Our results demonstrate the importance of proper data analysis and consequent pre and post-processing to improve prediction performance. | en |
utb.faculty | Faculty of Applied Informatics | |
dc.identifier.uri | http://hdl.handle.net/10563/1011440 | |
utb.identifier.obdid | 43884131 | |
utb.identifier.scopus | 2-s2.0-85148893664 | |
utb.identifier.wok | 001058109504073 | |
utb.source | d-scopus | |
dc.date.accessioned | 2023-03-20T08:32:11Z | |
dc.date.available | 2023-03-20T08:32:11Z | |
dc.description.sponsorship | CZ LM2018140; IGA/CebiaTech/2022/001; Ministerstvo Školství, Mládeže a Tělovýchovy, MŠMT | |
dc.description.sponsorship | Internal Grant Agency of Tomas Bata University [IGA/CebiaTech/2022/001]; project "e-Infrastruktura CZ" - Ministry of Education, Youth and Sports of the Czech Republic [e-INFRA CZ LM2018140] | |
utb.contributor.internalauthor | Turečková, Alžběta | |
utb.contributor.internalauthor | Tureček, Tomáš | |
utb.contributor.internalauthor | Komínková Oplatková, Zuzana | |
utb.fulltext.sponsorship | This work was supported by Internal Grant Agency of Tomas Bata University under the project no. IGA/CebiaTech/2022/001, and further by the resources of A.I.Lab at the Faculty of Applied Informatics, Tomas Bata University in Zlin. Computational resources were partly supplied also by the project ”e-Infrastruktura CZ” (e-INFRA CZ LM2018140) supported by the Ministry of Education, Youth and Sports of the Czech Republic. | |
utb.wos.affiliation | [Tureckova, Alzbeta; Turecek, Tomas; Oplatkova, Zuzana Kominkova] Tomas Bata Univ Zlin, Fac Appl Informat, Nam TG Masaryka 5555, Zlin 76001, Czech Republic | |
utb.scopus.affiliation | Tomas Bata University in Zlin, Faculty of Applied Informatics, Nam. T. G. Masaryka 5555, Zlin, 76001, Czech Republic | |
utb.fulltext.projects | IGA/CebiaTech/2022/001 | |
utb.fulltext.projects | LM2018140 |