Publikace UTB
Repozitář publikační činnosti UTB

Sub-region segmentation of brain tumors from multimodal MRI images using 3D U-Net

Repozitář DSpace/Manakin

Zobrazit minimální záznam


dc.title Sub-region segmentation of brain tumors from multimodal MRI images using 3D U-Net en
dc.contributor.author Alhaj Ali, Ammar Nassan
dc.contributor.author Katta, Rasin
dc.contributor.author Jašek, Roman
dc.contributor.author Chramcov, Bronislav
dc.contributor.author Krayem, Said
dc.relation.ispartof Lecture Notes in Networks and Systems
dc.identifier.issn 2367-3370 Scopus Sources, Sherpa/RoMEO, JCR
dc.identifier.isbn 978-3-031-21438-7
dc.date.issued 2023
utb.relation.volume 597
dc.citation.spage 357
dc.citation.epage 367
dc.event.title 6th Computational Methods in Systems and Software, CoMeSySo 2022
dc.event.location online
dc.event.sdate 2022-10-10
dc.event.edate 2022-10-15
dc.type conferenceObject
dc.language.iso en
dc.publisher Springer Science and Business Media Deutschland GmbH
dc.identifier.doi 10.1007/978-3-031-21438-7_29
dc.relation.uri https://link.springer.com/chapter/10.1007/978-3-031-21438-7_29
dc.subject 3D image segmentation en
dc.subject 3D U-net en
dc.subject brain tumor segmentation en
dc.subject BraTS en
dc.subject deep learning en
dc.description.abstract Accurate segmentation of brain tumors from the magnetic resonance image (MRI) is an essential step for radionics analysis as well as finding the tumor extension is so necessary to plan the best treatment to improve the survival rate. Manually extracting sub-regions of the brain tumor from MRI is a tedious process and time-consuming, as the complex brain tumor images require extensive human expertise. In recent years, deep learning models have proved effective in medical image segmentation tasks. In brain tumor segmentation, the 3D multimodal MRI poses some challenges such as computation and memory limitations. This study aims to develop a deep learning model using 3D U-Net for brain tumor segmentation. The segmentation results on BraTS 2020 dataset show that the proposed model achieves promising performance. en
utb.faculty Faculty of Applied Informatics
dc.identifier.uri http://hdl.handle.net/10563/1011443
utb.identifier.obdid 43885000
utb.identifier.scopus 2-s2.0-85148719046
utb.identifier.wok 000992418500029
utb.source d-scopus
dc.date.accessioned 2023-03-20T08:32:19Z
dc.date.available 2023-03-20T08:32:19Z
utb.contributor.internalauthor Alhaj Ali, Ammar Nassan
utb.contributor.internalauthor Katta, Rasin
utb.contributor.internalauthor Jašek, Roman
utb.contributor.internalauthor Chramcov, Bronislav
utb.contributor.internalauthor Krayem, Said
utb.fulltext.sponsorship -
utb.wos.affiliation [Ali, Ammar Alhaj; Katta, Rasin; Jasek, Roman; Chramco, Bronislav; Krayem, Said] Tomas Bata Univ Zlin, Fac Appl Informat, Zlin, Czech Republic
utb.scopus.affiliation Faculty of Applied Informatics, Tomas Bata University in Zlin, Zlin, Czech Republic
utb.fulltext.projects -
Find Full text

Soubory tohoto záznamu

Zobrazit minimální záznam