Kontaktujte nás | Jazyk: čeština English
dc.title | Sub-region segmentation of brain tumors from multimodal MRI images using 3D U-Net | en |
dc.contributor.author | Alhaj Ali, Ammar Nassan | |
dc.contributor.author | Katta, Rasin | |
dc.contributor.author | Jašek, Roman | |
dc.contributor.author | Chramcov, Bronislav | |
dc.contributor.author | Krayem, Said | |
dc.relation.ispartof | Lecture Notes in Networks and Systems | |
dc.identifier.issn | 2367-3370 Scopus Sources, Sherpa/RoMEO, JCR | |
dc.identifier.isbn | 978-3-031-21438-7 | |
dc.date.issued | 2023 | |
utb.relation.volume | 597 | |
dc.citation.spage | 357 | |
dc.citation.epage | 367 | |
dc.event.title | 6th Computational Methods in Systems and Software, CoMeSySo 2022 | |
dc.event.location | online | |
dc.event.sdate | 2022-10-10 | |
dc.event.edate | 2022-10-15 | |
dc.type | conferenceObject | |
dc.language.iso | en | |
dc.publisher | Springer Science and Business Media Deutschland GmbH | |
dc.identifier.doi | 10.1007/978-3-031-21438-7_29 | |
dc.relation.uri | https://link.springer.com/chapter/10.1007/978-3-031-21438-7_29 | |
dc.subject | 3D image segmentation | en |
dc.subject | 3D U-net | en |
dc.subject | brain tumor segmentation | en |
dc.subject | BraTS | en |
dc.subject | deep learning | en |
dc.description.abstract | Accurate segmentation of brain tumors from the magnetic resonance image (MRI) is an essential step for radionics analysis as well as finding the tumor extension is so necessary to plan the best treatment to improve the survival rate. Manually extracting sub-regions of the brain tumor from MRI is a tedious process and time-consuming, as the complex brain tumor images require extensive human expertise. In recent years, deep learning models have proved effective in medical image segmentation tasks. In brain tumor segmentation, the 3D multimodal MRI poses some challenges such as computation and memory limitations. This study aims to develop a deep learning model using 3D U-Net for brain tumor segmentation. The segmentation results on BraTS 2020 dataset show that the proposed model achieves promising performance. | en |
utb.faculty | Faculty of Applied Informatics | |
dc.identifier.uri | http://hdl.handle.net/10563/1011443 | |
utb.identifier.obdid | 43885000 | |
utb.identifier.scopus | 2-s2.0-85148719046 | |
utb.identifier.wok | 000992418500029 | |
utb.source | d-scopus | |
dc.date.accessioned | 2023-03-20T08:32:19Z | |
dc.date.available | 2023-03-20T08:32:19Z | |
utb.contributor.internalauthor | Alhaj Ali, Ammar Nassan | |
utb.contributor.internalauthor | Katta, Rasin | |
utb.contributor.internalauthor | Jašek, Roman | |
utb.contributor.internalauthor | Chramcov, Bronislav | |
utb.contributor.internalauthor | Krayem, Said | |
utb.fulltext.sponsorship | - | |
utb.wos.affiliation | [Ali, Ammar Alhaj; Katta, Rasin; Jasek, Roman; Chramco, Bronislav; Krayem, Said] Tomas Bata Univ Zlin, Fac Appl Informat, Zlin, Czech Republic | |
utb.scopus.affiliation | Faculty of Applied Informatics, Tomas Bata University in Zlin, Zlin, Czech Republic | |
utb.fulltext.projects | - |