Publikace UTB
Repozitář publikační činnosti UTB

Phase change materials designed from Tetra Pak waste and paraffin wax as unique thermal energy storage systems

Repozitář DSpace/Manakin

Zobrazit minimální záznam


dc.title Phase change materials designed from Tetra Pak waste and paraffin wax as unique thermal energy storage systems en
dc.contributor.author Al-Gunaid, Taghreed
dc.contributor.author Sobolčiak, Patrik
dc.contributor.author Chriaa, Ibtissem
dc.contributor.author Karkri, Mustapha
dc.contributor.author Mrlík, Miroslav
dc.contributor.author Ilčíková, Markéta
dc.contributor.author Sedláček, Tomáš
dc.contributor.author Popelka, Anton
dc.contributor.author Krupa, Igor
dc.relation.ispartof Journal of Energy Storage
dc.identifier.issn 2352-152X Scopus Sources, Sherpa/RoMEO, JCR
dc.identifier.issn 2352-1538 Scopus Sources, Sherpa/RoMEO, JCR
dc.date.issued 2023
utb.relation.volume 64
dc.type article
dc.language.iso en
dc.publisher Elsevier Ltd
dc.identifier.doi 10.1016/j.est.2023.107173
dc.relation.uri https://www.sciencedirect.com/science/article/pii/S2352152X23005704
dc.relation.uri https://www.sciencedirect.com/science/article/pii/S2352152X23005704/pdfft?md5=dac2ddab177c3f5554c0a3b893bfc4f9&pid=1-s2.0-S2352152X23005704-main.pdf
dc.subject Tetra Pak waste en
dc.subject recycling en
dc.subject paraffin en
dc.subject low-density polyethylene en
dc.subject phase shape materials en
dc.subject heat absorption en
dc.description.abstract Thermal energy storage systems (TES) based on shape-stabilized phase change materials (SSPCM) designed from recycled Tetra Pak (TP) waste, paraffin wax (PW), and expanded graphite (EG) were investigated in this study. This work represents the first study to explore TP waste composed of low-density polyethylene (LDPE)/ aluminum (Al) components for energy storage applications. The LDPE part serves as a matrix conserving a material in a compact, solid shape after PW melting; PW acts as an active phase change component contributing to heat absorption/release through a phase change (from a solid to a liquid state, and vice versa) of its crystalline phase. EG serves as a filler that enhances the thermal conductivity and mechanical properties of materials.The focus was put on the optimization of the composition of SSPCM including PW, and EG, to check thermal, mechanical, and rheological properties which influence the future processability of such systems through extrusion, as well as to investigate the synergic effect of graphite and residual Al component on thermal con-ductivity and leakage of PW. There are two main demands on polymer/PW blends, namely well-separated melting peaks for both components at significantly different temperatures, and good compatibility between polymer and PW.The best performance of SSPCM investigated in this study was found for a mixture having the composition TP/ PW/EG = 50/40/10 w/w/w. This mixture shows well-balanced properties, including appropriate heat storage and release parameters, thermal conductivity, thermal diffusivity, toughness and strength, and low leakage of PW from the material. This system can store 116.2 J/g of heat energy and release 93.8 J/g of heat energy. The determination of the heat energy storage and release was performed by the transient guarded hot plate tech-nique. Tensile testing revealed that Young's modulus of the TP/PW/EG = 50/40/10 w/w/w composition was 924 +/- 71 MPa and the stress at break was 8.2 +/- 1.2 MPa, which are sufficient values from the applicability point of view. The composition stability of the prepared system was confirmed by rotational rheometry. The envi-ronmental relevance of these materials lies in the utilization of the waste, which has minimal usage, and after the hydropulping of Tetra Pak packaging, it accumulates in large volumes. This is the first study indicating that LDPE/Al recyclate is a cheap alternative for preparing TES materials, fulfilling all the requirements for such materials. This study indicates the potential of TP waste for the preparation of SSPCM using PW as a phase change component. The selection of PW with a specific melting point determines potential applications, including the building industry, thermal management of electronics, solar vapor generators for desalination, solar water heaters, battery/computer heat protection, etc. en
utb.faculty University Institute
utb.faculty Faculty of Technology
utb.faculty Faculty of Technology
dc.identifier.uri http://hdl.handle.net/10563/1011485
utb.identifier.obdid 43884771
utb.identifier.scopus 2-s2.0-85151247245
utb.identifier.wok 000967831200001
utb.source j-scopus
dc.date.accessioned 2023-04-18T13:35:28Z
dc.date.available 2023-04-18T13:35:28Z
dc.description.sponsorship RP/CPS/2022/003; Qatar National Research Fund, QNRF; Ministerstvo Školství, Mládeže a Tělovýchovy, MŠMT; Agentúra na Podporu Výskumu a Vývoja, APVV: APVV-19-0338
dc.description.sponsorship Qatar National Research Fund (The Qatar Foundation) [NPRP13S-0127-200177]; Ministry of Education, Youth, and Sports of the Czech Republic-DKRVO [RP/CPS/2022/003]; Slovak Research and Development Agency [APVV-19-0338]
utb.ou Centre of Polymer Systems
utb.ou Department of Physics and Materials Engineering
utb.ou Department of Polymer Engineering
utb.contributor.internalauthor Mrlík, Miroslav
utb.contributor.internalauthor Ilčíková, Markéta
utb.contributor.internalauthor Sedláček, Tomáš
utb.fulltext.sponsorship This publication was made possible by Award NPRP13S-0127-200177 from the Qatar National Research Fund (a member of The Qatar Foundation). The statements made herein are solely the responsibility of the authors. The authors (M.M., M.I., and T.S.) gratefully acknowledge the Ministry of Education, Youth, and Sports of the Czech Republic - DKRVO (RP/CPS/2022/003). Author M.I. thanks the Slovak Research and Development Agency for the financial support provided through grant APVV-19-0338.
utb.wos.affiliation [Al-Gunaid, Taghreed; Sobolciak, Patrik; Popelka, Anton; Krupa, Igor] Qatar Univ, Ctr Adv Mat, POB 2713, Doha, Qatar; [Chriaa, Ibtissem; Karkri, Mustapha] Univ Paris Est Creteil, CERTES, F-94010 Creteil, France; [Mrlik, Miroslav; Ilcikova, Marketa; Sedlacek, Tomas] Tomas Bata Univ Zlin, Ctr Polymer Syst, Trida T Bati 5678, Zlin 76001, Czech Republic; [Ilcikova, Marketa] Tomas Bata Univ Zlin, Fac Technol, Dept Phys & Mat Engn, Vavreckova 275, Zlin 7001, Czech Republic; [Ilcikova, Marketa] Slovak Acad Sci, Polymer Inst, Dubravska Cesta 9, Bratislava 84541 45, Slovakia; [Sedlacek, Tomas] Tomas Bata Univ Zlin, Fac Technol, Dept Polymer Engn, Zlin, Czech Republic
utb.scopus.affiliation Center for Advanced Materials, Qatar University, P. O. Box 2713, Doha, Qatar; Univ Paris Est Creteil, CERTES, Creteil, F-94010, France; Centre of Polymer Systems, Tomas Bata University in Zlin, Trida T. Bati 5678, Zlin, 760 01, Czech Republic; Department of Physics and Materials Engineering, Faculty of Technology, Tomas Bata University in Zlin, Vavřečkova 275, Zlin, 70 01, Czech Republic; Polymer Institute, Slovak Academy of Sciences, Dubravska cesta 9, 845 41, Bratislava, 45, Slovakia; Department of Polymer Engineering, Faculty of Technology, Tomas Bata University in Zlin, Zlin, Czech Republic
utb.fulltext.projects NPRP13S-0127-200177
utb.fulltext.projects DKRVO RP/CPS/2022/003
utb.fulltext.projects APVV-19-0338
Find Full text

Soubory tohoto záznamu

Zobrazit minimální záznam