Publikace UTB
Repozitář publikační činnosti UTB

Transfer-stable aggregation functions: Applications, challenges, and emerging trends

Repozitář DSpace/Manakin

Zobrazit minimální záznam


dc.title Transfer-stable aggregation functions: Applications, challenges, and emerging trends en
dc.contributor.author Kurač, Zbyněk
dc.relation.ispartof Decision Analytics Journal
dc.identifier.issn 2772-6622 Scopus Sources, Sherpa/RoMEO, JCR
dc.date.issued 2023
utb.relation.volume 7
dc.type review
dc.language.iso en
dc.publisher Elsevier Inc.
dc.identifier.doi 10.1016/j.dajour.2023.100210
dc.relation.uri https://www.sciencedirect.com/science/article/pii/S2772662223000504
dc.relation.uri https://www.sciencedirect.com/science/article/pii/S2772662223000504/pdfft?md5=311ca3d28eb26986cdee22a7a942388b&pid=1-s2.0-S2772662223000504-main.pdf
dc.subject transfer-stability en
dc.subject aggregation function en
dc.subject finite lattice en
dc.subject transfer principle en
dc.subject horizontal sums en
dc.subject distance-stable lattice en
dc.description.abstract The original transfer-stable aggregation functions generalized the arithmetic means to finite chains. The idea of applying these functions was later demonstrated by purchasing several products depending on the quality and price of the products. This paper aims to continue this idea and show other possible applications of transfer-stable aggregation functions. We identify several concerns in various applications and present possible remedies to address these concerns. We show different types of lattices could be used to compile the assignment of a given application problem. Based on this finding, we can very effectively divide the products into so-called qualitative classes. We conclude that distance-stable lattices are most effective in these applications. Moreover, we also show that the classes better reflect reality using these lattices. en
utb.faculty Faculty of Applied Informatics
dc.identifier.uri http://hdl.handle.net/10563/1011493
utb.identifier.obdid 43884486
utb.identifier.scopus 2-s2.0-85151407807
utb.source j-scopus
dc.date.accessioned 2023-04-24T12:59:31Z
dc.date.available 2023-04-24T12:59:31Z
dc.rights Attribution 4.0 International
dc.rights.uri http://creativecommons.org/licenses/by/4.0/
dc.rights.access openAccess
utb.ou Department of Mathematics
utb.contributor.internalauthor Kurač, Zbyněk
utb.fulltext.affiliation Zbyněk Kurač Tomas Bata University in Zlín, Faculty of Applied Informatics, The Department of Mathematics, Nad Stráněmi 4511, 760 05, Zlín, Czech Republic
utb.fulltext.dates Received 16 February 2023 Received in revised form 14 March 2023 Accepted 24 March 2023 Available online 28 March 2023
utb.fulltext.references [1] G. Beliakov, H. Bustince, T. Calvo, A Practical Guide to Averaging Functions, Springer, 2016. [2] P. Pasteczka, On a lattice-like property of quasi-arithmetic means, J. Math. Anal. Appl. 486 (1) (2020). [3] L. Rozovsky, Comparison of arithmetic, geometric, and harmonic means, Math. Not. 110 (1–2) (2021) 118–125. [4] M.Y. Xie, J. Zhang, Inequalities for arithmetic–geometric–harmonic means of sector matrices, Linear Multilinear Algebra 70 (20) (2022) 5922–5931. [5] AFRL de Hierro, C. Roldan, H. Bustince, J. Fernandez, I. Rodriguez, H. Fardoun, J. Lafuente, Affine construction methodology of aggregation functions, Fuzzy Sets Syst. 414 (2021) 146–164. [6] B. De Baets, H. De Meyer, Maximal directions of monotonicity of an aggregation function, Fuzzy Sets and Systems 433 (2022) 54–78. [7] S. Doria, R. Mesiar, A. Seliga, Sub-additive aggregation functions and their applications in construction of coherent upper previsions, Mathematics 9 (1) (2021). [8] L.S. Jin, R. Mesiar, M. Kalina, J. Spirkova, S. Borkotokey, Generalized phitransformations of aggregation functions, Fuzzy Sets and Systems 372 (2019) 124–141. [9] R. Mesiar, A. Kolesarova, S. Borkotokey, L. Jin, Möbius product-based construc-tions of aggregation functions, Fuzzy Sets and Systems 448 (2022) 17–34, Special Issue. [10] A. Seliga, K. Hrinakova, I. Seligova, Positively homogeneous and super-/sub-additive aggregation functions, Fuzzy Sets and Systems 451 (2022) 385–397. [11] Y. Su, W. Zong, R. Mesiar, Characterization of homogeneous and quasihomogeneous binary aggregation functions, Fuzzy Sets and Systems 433 (2022) 96–107. [12] C. Bejines, M.J. Chasco, J. Elorza, Aggregation of fuzzy subgroups, Fuzzy Sets and Systems 418 (2021) 170–184, Special Issue. [13] M. Couceiro, D. Dubois, H. Fargier, M. Grabisch, H. Prade, A. Rico, New directions in ordinal evaluation: Sugeno integrals and beyond, in: M. Doumpos, J. Figueira, Greco S., C. Zopounidis (Eds.), New Perspectives in Multiple Criteria Decision Making. Multiple Criteria Decision Making, Springer, Cham, 2019, 978-3-030-11481-7. [14] R. Halaš, Z. Kurač, R. Mesiar, J. Pócs, Binary generating set of the clone of idempotent aggregation functions on bounded lattices, Inform. Sci. 462 (2018) 367–373. [15] R. Liang, X. Zhang, Pseudo general overlap functions and weak inflationary pseudo BL-algebras, Mathematics 10 (16) (2022). [16] G. Grätzer, F. Wehrung, Lattice Theory: Special Topics and Applications, Vol. 1, Springer, Switzerland, 2014. [17] R. Halaš, J. Pócs, J. Pócsová, On join-dense subsets of certain families of aggregation functions, Mathematics 11 (1) (2023). [18] I. Chajda, R. Halas, R. Mesiar, On the decomposability of aggregation functions on direct products of posets, Fuzzy Sets and Systems 386 (2020) 25–35. [19] A. Mehenni, L. Zedam, B. Benseba, f-aggregation operators on a bounded lattice, Azerb. J. Math. 12 (1) (2022) 109–128. [20] R. Mesiar, A. Kolesarova, T. Senapati, Aggregation on lattices isomorphic to the lattice of closed subintervals of the real unit interval, Fuzzy Sets and Systems 441 (2022) 262–278. [21] R.E.B. Paiva, B.R.C. Bedregal, General pseudo quasi-overlap functions on lattices, Axioms 11 (8) (2022). [22] Y. Sun, B. Pang, S.Y. Zhang, Binary relations induced from quasi-overlap functions and quasi-grouping functions on a bounded lattice, Comput. Appl. Math. 41 (8) (2022). [23] Y. Wang, B.Q. Hu, On ordinal sums of overlap and grouping functions on complete lattices, Fuzzy Sets and Systems 439 (2022) 1–28, Special Issue. [24] Y.Q. Zhang, H.W. Liu, New constructions of lattice-valued quasi-overlap functions, Iran. J. Fuzzy Syst. 20 (1) (2023). [25] Z. Kurač, Transfer-stable means on finite chains, Fuzzy Sets and Systems 372 (2019) 111–123. [26] Z. Kurač, T. Riemel, L. Rýparová, Transfer-stable aggregation functions on finite lattices, Inform. Sci. 521 (2020) 88–106. [27] J. Dou, B. Ye, Product differentiation, exclusivity, and multi-purchasing, Ann. Econ. Finance 19 (1) (2018) 301–318. [28] Z. Liu, T. Nishi, Analyzing just-in-time purchasing strategy in supply chains using an evolutionary game approach, J. Adv. Mech. Des., Syst., Manuf. 14 (5) (2020). [29] G. Ma, J. Zheng, J. Wei, S. Wang, Y. Han, Robust optimization strategies for seller based on uncertainty sets in context of sequential auction, Appl. Math. Comput. 390 (2021). [30] W.-W. Ren, Y. Liu, Q. Zhang, X.-Y. Wang, Sales strategies considering consumer purchasing preferences for imperfect complementary products, J. Revenue Pricing Manag. 21 (2) (2022) 164–182. [31] E. Senyigit, B. Babayigit, Multi-criteria supplier selection and purchase problem, Sigma: J. Eng. Nat. Sci. 36 (4) (2018) 1253–1262. [32] H. Schiele, E. Hofman, B.M. Zunk, J. Eggers, Why and how to involve purchasing in new product development? Int. J. Innov. Manag. 25 (3) (2021). [33] S.A.F.S.A. Rahman, K.N.A. Maulud, B. Pradhan, S.N.A.S. Mustorpha, Manifestation of lattice topology data model for indoor navigation path based on the 3D building environment, J. Comput. Des. Eng. 8 (6) (2021) 1533–1547. [34] K. Zhu, J. Wang, N. Guo, Z. Ding, P. Mei, Simulation of pedestrian counter flow with conflicting preference using a lattice-based simulation model, Internat. J. Modern Phys. C 31 (9) (2020). [35] S.X. Duan, S. Wibowo, J. Chong, A multicriteria analysis approach for evaluating the performance of agriculture decision support systems for sustainable agribusiness, Mathematics 9 (8) (2021). [36] Y. Fang, X. Zhang, Y. Li, Research on multicriteria decision-making scheme of high-speed railway express product pricing and slot allocation under competitive conditions, Mathematics 10 (9) (2022). [37] A. Iampan, G.S. Garcia, M. Riaz, H.M.A. Farid, R. Chinram, Linear diophantine fuzzy Einstein aggregation operators for multi-criteria decision-making problems, J. Math. 2021 (2021). [38] M. Jamil, F. Afzal, D. Afzal, D.K. Thapa, A. Maqbool, Multicriteria decisionmaking methods using bipolar neutrosophic Hamacher geometric aggregation operators, J. Funct. Spaces 2022 (2022). [39] M. Juanpera, B. Domenech, L. Ferrer-Marti, A. Garcia-Villoria, R. Pastor, Methodology for integrated multicriteria decision-making with uncertainty: Extending the compromise ranking method for uncertain evaluation of alternatives, Fuzzy Sets and Systems 434 (2022) 135–158, Special Issue. [40] W.C. Lo, C.H. Lu, Y.C. Chou, Application of multicriteria decision making and multi-objective planning methods for evaluating metropolitan parks in terms of budget and benefits, Mathematics 8 (8) (2020). [41] L. Louvart, P. Meyer, A.-L. Olteanu, MODEL: A multicriteria ordinal evaluation tool for GIS, Int. J. Geogr. Inf. Sci. 29 (1910) (2015) 10–1931. [42] D. Macek, I. Magdalenic, N.B. Redep, A model for the evaluation of critical IT systems using multicriteria decision-making with elements for risk assessment, Mathematics 9 (9) (2021). [43] J. Muangman, K. Krootsong, P. Polrong, W. Yukunthorn, W. Udomsap, Fuzzy multicriteria decision-making for ranking intercrop in rubber plantations under social, economic, and environmental criteria, Adv. Fuzzy Syst. 2020 (2020). [44] I. Chajda, H. Länger, Horizontal sums of bounded lattices, Math. Pannonica 20/1 (2009) 1–5. [45] I. Chajda, H. Langer, Orthomodular lattices that are horizontal sums of Boolean algebras, Commentationes Math. Univ. Carolinae 61 (1) (2020) 11–20. [46] J. Tkadlec, P. Zacek, States on effect algebras, their products and horizontal sums, Math. Slovaca 66 (5) (2016) 1029–1036.
utb.fulltext.sponsorship -
utb.scopus.affiliation Tomas Bata University in Zlín, Faculty of Applied Informatics, The Department of Mathematics, Nad Stráněmi 4511, Zlín, 760 05, Czech Republic
utb.fulltext.projects -
utb.fulltext.faculty Faculty of Applied Informatics
utb.fulltext.ou Department of Mathematics
Find Full text

Soubory tohoto záznamu

Zobrazit minimální záznam

Attribution 4.0 International Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je Attribution 4.0 International