Publikace UTB
Repozitář publikační činnosti UTB

Motion analysis using global navigation satellite system and physiological data

Repozitář DSpace/Manakin

Zobrazit minimální záznam


dc.title Motion analysis using global navigation satellite system and physiological data en
dc.contributor.author Procházka, Aleš
dc.contributor.author Molčanová, Alexandra
dc.contributor.author Charvátová, Hana
dc.contributor.author Geman, Oana
dc.contributor.author Vyšata, Oldřich
dc.relation.ispartof IEEE Access
dc.identifier.issn 2169-3536 Scopus Sources, Sherpa/RoMEO, JCR
dc.date.issued 2023
utb.relation.volume 11
dc.citation.spage 42096
dc.citation.epage 42103
dc.type article
dc.language.iso en
dc.publisher Institute of Electrical and Electronics Engineers Inc.
dc.identifier.doi 10.1109/ACCESS.2023.3270102
dc.relation.uri https://ieeexplore.ieee.org/document/10107613
dc.relation.uri https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10107613
dc.subject multichannel signal processing en
dc.subject global navigation satellite systems en
dc.subject feature extraction en
dc.subject machine learning en
dc.subject computational intelligence en
dc.subject classification en
dc.subject physical activity monitoring en
dc.subject cardiology en
dc.subject global navigation satellite system en
dc.subject sensors en
dc.subject monitoring en
dc.subject biomedical monitoring en
dc.subject satellites en
dc.subject heart rate en
dc.subject smart phones en
dc.description.abstract Motion analysis using wearable sensors is an essential research topic with broad mathematical foundations and applications in various areas, including engineering, robotics, and neurology. This paper presents the use of the global navigation satellite system (GNSS) for detecting and recording the position of a moving body, along with signals from additional sensors, for monitoring of physical activity and analyzing heart rate dynamics during running on route segments of different slopes and speeds. This method provides an alternative to the heart monitoring on the treadmill ergometer in the cardiology laboratory. The proposed computational methodology involves digital data preprocessing, time synchronization, and data resampling to enable their correlation, feature extraction both in time and frequency domains, and classification. The datasets include signals acquired during ten experimental runs in the selected area. The motion patterns detection involves segmenting the signals by analysing the GNSS data, evaluating the patterns, and classifying the motion signals under different terrain conditions. This classification method compares neural networks, support vector machine, Bayesian, and k-nearest neighbour methods. The highest accuracy of 93.3 % was achieved by using combined features and a two-layer neural network for classification into three classes with different slopes. The proposed method and graphical user interface demonstrate the efficiency of multi-channel and multi-dimensional signal processing with applications in rehabilitation, fitness movement monitoring, neurology, cardiology, engineering, and robotic systems. en
utb.faculty Faculty of Applied Informatics
dc.identifier.uri http://hdl.handle.net/10563/1011548
utb.identifier.obdid 43884902
utb.identifier.scopus 2-s2.0-85159687720
utb.identifier.wok 000981907000001
utb.source j-scopus
dc.date.accessioned 2023-06-12T08:13:24Z
dc.date.available 2023-06-12T08:13:24Z
dc.rights Attribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.access openAccess
utb.contributor.internalauthor Charvátová, Hana
utb.fulltext.affiliation ALEŠ PROCHÁZKA 1,2, (Life Senior Member, IEEE), ALEXANDRA MOLČANOVÁ1, HANA CHARVÁTOVÁ 3, OANA GEMAN4, (Senior Member, IEEE), AND OLDŘICH VYŠATA5, (Member, IEEE) 1 Department of Mathematics, Informatics and Cybernetics, University of Chemistry and Technology Prague, 160 00 Prague, Czech Republic 2 Czech Institute of Informatics, Robotics and Cybernetics, Czech Technical University in Prague, 160 00 Prague, Czech Republic 3 Faculty of Applied Informatics, Tomas Bata University in Zlín, 760 01 Zlín, Czech Republic 4 Department of Health and Human Development, Stefan cel Mare University of Suceava, 720229 Suceava, Romania 5 Department of Neurology, Faculty of Medicine in Hradec Králové, Charles University, 500 05 Hradec Králové, Czech Republic Corresponding author: Aleš Procházka (A.Prochazka@ieee.org)
utb.fulltext.dates Received 3 April 2023 accepted 20 April 2023 date of publication 24 April 2023 date of current version 3 May 2023
utb.fulltext.references [1] W. Tao, T. Liu, R. Zheng, and H. Feng, ‘‘Gait analysis using wearable sensors,’’ Sensors, vol. 12, no. 2, pp. 2255–2283, Feb. 2012. [2] R. T. Li, S. R. Kling, M. J. Salata, S. A. Cupp, J. Sheehan, and J. E. Voos, ‘‘Wearable performance devices in sports medicine,’’ Sports Health, Multidisciplinary Approach, vol. 8, no. 1, pp. 74–78, Jan. 2016. [3] A. Prochazka, M. Schatz, O. Tupa, M. Yadollahi, O. Vysata, and M. Walls, ‘‘The MS Kinect image and depth sensors use for gait features detection,’’ in Proc. IEEE Int. Conf. Image Process. (ICIP), Oct. 2014, pp. 2271–2274. [4] O. Dostál, A. Procházka, O. Vyšata, O. Ťupa, P. Cejnar, and M. Vališ, ‘‘Recognition of motion patterns using accelerometers for ataxic gait assessment,’’ Neural Comput. Appl., vol. 33, no. 7, pp. 2207–2215, Apr. 2021. [5] X. Liu, S. Rajan, N. Ramasarma, P. Bonato, and S. I. Lee, ‘‘The use of a finger-worn accelerometer for monitoring of hand use in ambulatory settings,’’ IEEE J. Biomed. Health Informat., vol. 23, no. 2, pp. 599–606, Mar. 2019. [6] T. Szot, C. Specht, P. S. Dabrowski, and M. Specht, ‘‘Comparative analysis of positioning accuracy of Garmin Forerunner wearable GNSS receivers in dynamic testing,’’ Measurement, vol. 183, Oct. 2021, Art. no. 109846. [7] L. S. Luteberget and M. Gilgien, ‘‘Validation methods for global and local positioning-based athlete monitoring systems in team sports: A scoping review,’’ BMJ Open Sport Exerc. Med., vol. 6, no. 1, Aug. 2020, Art. no. e000794. [8] A. Jain and V. Kanhangad, ‘‘Human activity classification in smartphones using accelerometer and gyroscope sensors,’’ IEEE Sensors J., vol. 18, no. 3, pp. 1169–1177, Feb. 2018. [9] M. del Rosario, S. Redmond, and N. Lovell, ‘‘Tracking the evolution of smartphone sensing for monitoring human movement,’’ Sensors, vol. 15, no. 8, pp. 18901–18933, Jul. 2015. [10] P. Silsupadol, K. Teja, and V. Lugade, ‘‘Reliability and validity of a smartphone-based assessment of gait parameters across walking speed and smartphone locations: Body, bag, belt, hand, and pocket,’’ Gait Posture, vol. 58, pp. 516–522, Oct. 2017. [11] B. Cvetković, R. Szeklicki, V. Janko, P. Lutomski, and M. Luštrek, ‘‘Realtime activity monitoring with a wristband and a smartphone,’’ Inf. Fusion, vol. 43, pp. 77–93, Sep. 2018. [12] G. M. Weiss, K. Yoneda, and T. Hayajneh, ‘‘Smartphone and smartwatchbased biometrics using activities of daily living,’’ IEEE Access, vol. 7, pp. 133190–133202, 2019. [13] Z. Yu, ‘‘Research on fitness movement monitoring system based on Internet of Things,’’ J. Healthcare Eng., vol. 2022, pp. 1–7, Mar. 2022. [14] A. Procházka, S. Vaseghi, H. Charvátová, O. Ťupa, and O. Vyšata, ‘‘Cycling segments multimodal analysis and classification using neural networks,’’ Appl. Sci., vol. 7, no. 6, p. 581, Jun. 2017. [15] O. Geman, S. Sanei, I. Chiuchisan, A. Graur, A. Prochazka, and O. Vysata, ‘‘Towards an inclusive Parkinson’s screening system,’’ in Proc. 18th Int. Conf. Syst. Theory, Control Comput. (ICSTCC), Oct. 2014, pp. 475–481. [16] S. Majumder and M. J. Deen, ‘‘Smartphone sensors for health monitoring and diagnosis,’’ Sensors, vol. 19, no. 9, p. 2164, May 2019. [17] S. O. Slim, A. Atia, M. M. A., and M.-S. M. Mostafa, ‘‘Survey on human activity recognition based on acceleration data,’’ Int. J. Adv. Comput. Sci. Appl., vol. 10, no. 3, pp. 84–98, 2019. [18] A. Lucas, J. Hermiz, J. Labuzetta, Y. Arabadzhi, N. Karanjia, and V. Gilja, ‘‘Use of accelerometry for long term monitoring of stroke patients,’’ IEEE J. Transl. Eng. Health Med., vol. 7, pp. 1–10, 2019. [19] F. Sabry, T. Eltaras, W. Labda, K. Alzoubi, and Q. Malluhi, ‘‘Machine learning for healthcare wearable devices: The big picture,’’ J. Healthcare Eng., vol. 2022, pp. 1–25, Apr. 2022. [20] S. Jin, Q. Wang, and G. Dardanelli, ‘‘A review on multi-GNSS for Earth observation and emerging applications,’’ Remote Sens., vol. 14, no. 16, p. 3930, Aug. 2022. [21] Y. Lou, X. Dai, X. Gong, C. Li, Y. Qing, Y. Liu, Y. Peng, and S. Gu, ‘‘A review of real-time multi-GNSS precise orbit determination based on the filter method,’’ Satell. Navigat., vol. 3, no. 1, pp. 1–15, Dec. 2022. [22] D. Janos, P. Kuras, and Ł. Ortyl, ‘‘Evaluation of low-cost RTK GNSS receiver in motion under demanding conditions,’’ Measurement, vol. 201, Sep. 2022, Art. no. 111647. [23] R. Tamimi, ‘‘Relative Accuracy found within iPhone data collection,’’ Int. Arch. Photogramm., Remote Sens. Spatial Inf. Sci., vols. XLIII-B2-2022, pp. 303–308, May 2022. [24] A. Procházka, O. Vyšata, and V. Mařík, ‘‘Integrating the role of computational intelligence and digital signal processing in education,’’ IEEE Signal Process. Mag., vol. 38, no. 3, pp. 154–162, May 2021. [25] B. Langari, S. Vaseghi, A. Prochazka, B. Vaziri, and F. T. Aria, ‘‘Edgeguided image gap interpolation using multi-scale transformation,’’ IEEE Trans. Image Process., vol. 25, no. 9, pp. 4394–4405, Sep. 2016. [26] B. Hofmann-Wellenhof, H. Lichtenegger, and E. Wasle, GNSS Global Navigation Satellite Systems: GPS, GLONASS, Galileo, and More. Austria, Vienna: Springer, 2007. [27] J. Yu, X. Meng, B. Yan, B. Xu, Q. Fan, and Y. Xie, ‘‘Global navigation satellite system-based positioning technology for structural health monitoring: A review,’’ Struct. Control Health Monitor., vol. 27, no. 1, Jan. 2020, Art. no. e2467. [28] H. Ye, L. Sheng, T. Gu, and Z. Huang, ‘‘SELoc: Collect your location data using only a barometer sensor,’’ IEEE Access, vol. 7, pp. 88705–88717, 2019. [29] K. A. Mackintosh, A. H. K. Montoye, K. A. Pfeiffer, and M. A. McNarry, ‘‘Investigating optimal accelerometer placement for energy expenditure prediction in children using a machine learning approach,’’ Physiolog. Meas., vol. 37, no. 10, pp. 1728–1740, Oct. 2016. [30] A. Mannini and S. S. Intille, ‘‘Classifier personalization for activity recognition using wrist accelerometers,’’ IEEE J. Biomed. Health Informat., vol. 23, no. 4, pp. 1585–1594, Jul. 2019. [31] H. Allahbakhshi, L. Conrow, B. Naimi, and R. Weibel, ‘‘Using accelerometer and GPS data for real-life physical activity type detection,’’ Sensors, vol. 20, no. 3, p. 588, Jan. 2020. [32] A. Prochazka, O. Dostal, P. Cejnar, H. I. Mohamed, Z. Pavelek, M. Valis, and O. Vysata, ‘‘Deep learning for accelerometric data assessment and ataxic gait monitoring,’’ IEEE Trans. Neural Syst. Rehabil. Eng., vol. 29, pp. 360–367, 2021. [33] K. J. Hunt, R. Grunder, and A. Zahnd, ‘‘Identification and comparison of heart-rate dynamics during cycle ergometer and treadmill exercise,’’ PLoS ONE, vol. 14, no. 8, Aug. 2019, Art. no. e0220826. [34] H. Wang and K. J. Hunt, ‘‘Identification of heart rate dynamics during treadmill exercise: Comparison of first- and second-order models,’’ Biomed. Eng. OnLine, vol. 20, no. 1, pp. 1–10, Dec. 2021. [35] Y. Kong and K. H. Chon, ‘‘Heart rate tracking using a wearable photoplethysmographic sensor during treadmill exercise,’’ IEEE Access, vol. 7, pp. 152421–152428, 2019. [36] C. Khundam and F. Nöel, ‘‘A study of physical fitness and enjoyment on virtual running for exergames,’’ Int. J. Comput. Games Technol., vol. 2021, pp. 1–16, Apr. 2021. [37] B. McIlroy, L. Passfield, H.-C. Holmberg, and B. Sperlich, ‘‘Virtual training of endurance cycling—A summary of strengths, weaknesses, opportunities and threats,’’ Frontiers Sports Act. Living, vol. 3, Mar. 2021, Art. no. 631101. [38] E. Jerhotová, J. Švihlík, and A. Procházka, Biomedical Image Volumes Denoising Via the Wavelet Transform. Rijeka, Croatia: InTech, 2011, pp. 435–458. [39] J. P. Barrajón and A. F. S. Juan, ‘‘Validity and reliability of a smartphone accelerometer for measuring lift velocity in bench-press exercises,’’ Sustainability, vol. 12, no. 6, p. 2312, Mar. 2020. [40] A. Procházka, O. Vyšata, M. Vališ, O. Ťupa, M. Schätz, and V. Mařík, ‘‘Bayesian classification and analysis of gait disorders using image and depth sensors of Microsoft Kinect,’’ Digit. Signal Process., vol. 47, pp. 169–177, Dec. 2015. [41] H. Charvatova, A. Prochazka, O. Vysata, C. P. Suarez-Araujo, and J. H. Smith, ‘‘Evaluation of accelerometric and cycling cadence data for motion monitoring,’’ IEEE Access, vol. 9, pp. 129256–129263, 2021.
utb.fulltext.sponsorship This work was supported by the Ministry of Education, Youth and Sports of the Czech Republic—Program NPU I (LO1504).
utb.wos.affiliation [Prochazka, Ales; Molcanova, Alexandra] Univ Chem & Technol Prague, Dept Math Informat & Cybernet, Prague 16000, Czech Republic; [Prochazka, Ales] Czech Tech Univ, Czech Inst Informat Robot & Cybernet, Prague 16000, Czech Republic; [Charvatova, Hana] Tomas Bata Univ Zlin, Fac Appl Informat, Zlin 76001, Czech Republic; [Geman, Oana] Stefan cel Mare Univ Suceava, Dept Hlth & Human Dev, Suceava 720229, Romania; [Vysata, Oldrich] Charles Univ Prague, Fac Med Hradec Kralove, Dept Neurol, Hradec Kralove 50005, Czech Republic
utb.scopus.affiliation Department of Mathematics, Informatics and Cybernetics, University of Chemistry and Technology in Prague, Prague, Czech Republic; Faculty of Applied Informatics, Tomas Bata University in Zlín, Zlín, Czech Republic; Department of Health and Human Development, Stefan cel Mare University of Suceava, Suceava, Romania; Department of Neurology, Faculty of Medicine at Hradec Králové, Charles University in Prague, Hradec Králové, Czech Republic
utb.fulltext.projects LO1504
utb.fulltext.faculty Faculty of Applied Informatics
utb.fulltext.ou -
Find Full text

Soubory tohoto záznamu

Zobrazit minimální záznam

Attribution-NonCommercial-NoDerivatives 4.0 International Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je Attribution-NonCommercial-NoDerivatives 4.0 International