Kontaktujte nás | Jazyk: čeština English
dc.title | Combination of chemotherapy and mild hyperthermia using targeted nanoparticles: A potential treatment modality for breast cancer | en |
dc.contributor.author | Kaur, Ishdeep | |
dc.contributor.author | Tieu, Terence | |
dc.contributor.author | Deepagan, Veerasikku Gopal | |
dc.contributor.author | Ali, Muhammad A. | |
dc.contributor.author | Alsunaydih, Fahad | |
dc.contributor.author | Rudd, David | |
dc.contributor.author | Amini Moghaddam, Maliheh | |
dc.contributor.author | Bourgeois, Laure | |
dc.contributor.author | Adams, Timothy E. | |
dc.contributor.author | Thurecht, Kristofer J. | |
dc.contributor.author | Yuce, Mehmet | |
dc.contributor.author | Cifuentes-Rius, Anna | |
dc.contributor.author | Voelcker, Nicolas H. | |
dc.relation.ispartof | Pharmaceutics | |
dc.identifier.issn | 1999-4923 Scopus Sources, Sherpa/RoMEO, JCR | |
dc.date.issued | 2023 | |
utb.relation.volume | 15 | |
utb.relation.issue | 5 | |
dc.type | article | |
dc.language.iso | en | |
dc.publisher | MDPI | |
dc.identifier.doi | 10.3390/pharmaceutics15051389 | |
dc.relation.uri | https://www.mdpi.com/1999-4923/15/5/1389 | |
dc.subject | porous silicon nanoparticles | en |
dc.subject | drug delivery | en |
dc.subject | hyperthermia | en |
dc.subject | breast cancer | en |
dc.subject | combination therapy | en |
dc.description.abstract | Despite the clinical benefits that chemotherapeutics has had on the treatment of breast cancer, drug resistance remains one of the main obstacles to curative cancer therapy. Nanomedicines allow therapeutics to be more targeted and effective, resulting in enhanced treatment success, reduced side effects, and the possibility of minimising drug resistance by the co-delivery of therapeutic agents. Porous silicon nanoparticles (pSiNPs) have been established as efficient vectors for drug delivery. Their high surface area makes them an ideal carrier for the administration of multiple therapeutics, providing the means to apply multiple attacks to the tumour. Moreover, immobilising targeting ligands on the pSiNP surface helps direct them selectively to cancer cells, thereby reducing harm to normal tissues. Here, we engineered breast cancer-targeted pSiNPs co-loaded with an anticancer drug and gold nanoclusters (AuNCs). AuNCs have the capacity to induce hyperthermia when exposed to a radiofrequency field. Using monolayer and 3D cell cultures, we demonstrate that the cell-killing efficacy of combined hyperthermia and chemotherapy via targeted pSiNPs is 1.5-fold higher than applying monotherapy and 3.5-fold higher compared to using a nontargeted system with combined therapeutics. The results not only demonstrate targeted pSiNPs as a successful nanocarrier for combination therapy but also confirm it as a versatile platform with the potential to be used for personalised medicine. | en |
utb.faculty | University Institute | |
dc.identifier.uri | http://hdl.handle.net/10563/1011558 | |
utb.identifier.obdid | 43884840 | |
utb.identifier.scopus | 2-s2.0-85160659645 | |
utb.identifier.wok | 000996877300001 | |
utb.identifier.pubmed | 37242631 | |
utb.source | j-scopus | |
dc.date.accessioned | 2023-07-19T10:39:37Z | |
dc.date.available | 2023-07-19T10:39:37Z | |
dc.description.sponsorship | National Health and Medical Research Council, NHMRC: GNT1112432 | |
dc.description.sponsorship | National Health and Medical Research Council (NHMRC) of Australia [GNT1112432] | |
dc.rights | Attribution 4.0 International | |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | |
dc.rights.access | openAccess | |
utb.ou | Centre of Polymer Systems | |
utb.contributor.internalauthor | Amini Moghaddam, Maliheh | |
utb.fulltext.sponsorship | A.C-R. was supported by the National Health and Medical Research Council (NHMRC) of Australia (GNT1112432). | |
utb.wos.affiliation | [Kaur, Ishdeep; Tieu, Terence; Deepagan, Veerasikku G.; Rudd, David; Cifuentes-Rius, Anna; Voelcker, Nicolas H.] Monash Univ, Monash Inst Pharm & Pharmaceut Sci, 381 Royal Parade, Parkville, Vic 3052, Australia; [Ali, Muhammad A.; Alsunaydih, Fahad; Yuce, Mehmet] Monash Univ, Dept Elect & Comp Syst Engn, Clayton Campus, Clayton, Vic 3168, Australia; [Moghaddam, Maliheh A.] Tomas Bata Univ, Ctr Polymer Syst, 5678, Zlin 76001, Czech Republic; [Bourgeois, Laure] Monash Univ, Monash Ctr Electron Microscopy, Clayton Campus, Clayton, Vic 3168, Australia; [Adams, Timothy E.] Commonwealth Sci & Ind Res Org CSIRO, 343 Royal Parade, Parkville, Vic 3052, Australia; [Thurecht, Kristofer J.] Univ Queensland, Australian Inst Bioengn & Nanotechnol AIBN, Corner Coll & Cooper Rds, Brisbane, Qld 4072, Australia; [Voelcker, Nicolas H.] Melbourne Ctr Nanofabricat, Victorian Node Australian Natl Fabricat Facil, Clayton, Vic 3168, Australia | |
utb.scopus.affiliation | Monash Institute of Pharmacy and Pharmaceutical Sciences, Monash University, 381, Royal Parade, Parkville, VIC 3052, Australia; Department of Electrical and Computer Systems Engineering, Monash University, Clayton Campus, Clayton, VIC 3168, Australia; Centre of Polymer Systems, Tomas Bata University, 5678, Zlin, 760 01, Czech Republic; Monash Centre for Electron Microscopy, Clayton Campus, Monash University, Clayton, VIC 3168, Australia; Commonwealth Scientific and Industrial Research Organization (CSIRO), 343, Royal Parade, Parkville, VIC 3052, Australia; Australian Institute for Bioengineering and Nanotechnology (AIBN), Corner College and Cooper Rds, The University of Queensland, Brisbane, QLD 4072, Australia; Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, VIC 3168, Australia | |
utb.fulltext.projects | GNT1112432 |