Publikace UTB
Repozitář publikační činnosti UTB

Comparing stacking ensemble and deep learning for software project effort estimation

Repozitář DSpace/Manakin

Zobrazit minimální záznam


dc.title Comparing stacking ensemble and deep learning for software project effort estimation en
dc.contributor.author Huynh Thai, Hoc
dc.contributor.author Šilhavý, Radek
dc.contributor.author Prokopová, Zdenka
dc.contributor.author Šilhavý, Petr
dc.relation.ispartof IEEE Access
dc.identifier.issn 2169-3536 Scopus Sources, Sherpa/RoMEO, JCR
dc.date.issued 2023
utb.relation.volume 11
dc.citation.spage 60590
dc.citation.epage 60604
dc.type article
dc.language.iso en
dc.publisher Institute of Electrical and Electronics Engineers Inc.
dc.identifier.doi 10.1109/ACCESS.2023.3286372
dc.relation.uri https://ieeexplore.ieee.org/document/10151867
dc.relation.uri https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10151867
dc.subject complexity theory en
dc.subject deep learning en
dc.subject deep learning en
dc.subject ensemble en
dc.subject function point analysis en
dc.subject inductive transfer learning en
dc.subject predictive models en
dc.subject random forests en
dc.subject software en
dc.subject software effort estimation en
dc.subject task analysis en
dc.subject transfer learning en
dc.description.abstract This study focuses on improving the accuracy of effort estimation by employing ensemble, deep learning, and transfer learning techniques. An ensemble approach is utilized, incorporating XGBoost, Random Forest, and Histogram Gradient Boost as generators to enhance predictive capabilities. The performance of the ensemble method is compared against both the deep learning approach and the PFA-IFPUG technique. Statistical criteria including MAE, SA, MMRE, PRED(0.25), MBRE, MIBRE, and relevant information related to MMRE and PRED(0.25) are employed for evaluation. The results demonstrate that combining regression models with Random Forest as the final regressor and XGBoost and Histogram Gradient Boost as prior generators yields more accurate effort estimation than other combinations. Furthermore, the findings highlight the potential of transfer learning in the deep learning method, which exhibits superior performance over the ensemble approach. This approach leverages pre-trained models and continuously improves performance by training on new datasets, providing valuable insights for cross-company and cross-time effort estimation problems. The ISBSG dataset is used to build the pre-trained model, and the inductive transfer learning approach is verified based on the Desharnais, Albrecht, Kitchenham, and China datasets. The study underscores the significance of transfer learning and the integration of domain-specific knowledge from existing models to enhance the performance of new models, thereby improving accuracy, reducing errors, and enhancing predictive capabilities in effort estimation. Author en
utb.faculty Faculty of Applied Informatics
dc.identifier.uri http://hdl.handle.net/10563/1011582
utb.identifier.obdid 43885016
utb.identifier.scopus 2-s2.0-85162635099
utb.identifier.wok 001018576300001
utb.source j-scopus
dc.date.accessioned 2023-09-05T23:17:36Z
dc.date.available 2023-09-05T23:17:36Z
dc.description.sponsorship IGA/CebiaTech/2023/004, RVO/FAI/2021/002
dc.description.sponsorship Faculty of Applied Informatics, Tomas Bata University in Zlin [RVO/FAI/2021/002, IGA/CebiaTech/2023/004]
dc.rights Attribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.access openAccess
utb.contributor.internalauthor Huynh Thai, Hoc
utb.contributor.internalauthor Šilhavý, Radek
utb.contributor.internalauthor Prokopová, Zdenka
utb.contributor.internalauthor Šilhavý, Petr
utb.fulltext.sponsorship This work was supported by the Faculty of Applied Informatics, Tomas Bata University in Zlin, under Project RVO/FAI/2021/002 and Project IGA/CebiaTech/2023/004.
utb.wos.affiliation [Hoc, Huynh Thai; Silhavy, Radek; Prokopova, Zdenka; Silhavy, Petr] Tomas Bata Univ Zlin, Fac Appl Informat, Zlin 76001, Czech Republic
utb.scopus.affiliation Faculty of Applied Informatics, Tomas Bata University in Zlin, Nad Stranemi 4511, Zlin, Czech Republic
utb.fulltext.projects RVO/FAI/2021/002
utb.fulltext.projects IGA/CebiaTech/2023/004
Find Full text

Soubory tohoto záznamu

Soubory Velikost Formát Zobrazit

K tomuto záznamu nejsou připojeny žádné soubory.

Zobrazit minimální záznam

Attribution-NonCommercial-NoDerivatives 4.0 International Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je Attribution-NonCommercial-NoDerivatives 4.0 International