Kontaktujte nás | Jazyk: čeština English
dc.title | Leveraging Large Language Models for the generation of novel metaheuristic optimization algorithms | en |
dc.contributor.author | Pluháček, Michal | |
dc.contributor.author | Kazíková, Anežka | |
dc.contributor.author | Kadavý, Tomáš | |
dc.contributor.author | Viktorin, Adam | |
dc.contributor.author | Šenkeřík, Roman | |
dc.relation.ispartof | GECCO 2023 Companion - Proceedings of the 2023 Genetic and Evolutionary Computation Conference Companion | |
dc.identifier.isbn | 979-840070120-7 | |
dc.date.issued | 2023-07-24 | |
dc.citation.spage | 1812 | |
dc.citation.epage | 1820 | |
dc.event.title | 2023 Genetic and Evolutionary Computation Conference Companion, GECCO 2023 Companion | |
dc.event.location | Lisbon | |
utb.event.state-en | Portugal | |
utb.event.state-cs | Portugalsko | |
dc.event.sdate | 2023-07-15 | |
dc.event.edate | 2023-07-19 | |
dc.type | conferenceObject | |
dc.language.iso | en | |
dc.publisher | Association for Computing Machinery, Inc | |
dc.identifier.doi | 10.1145/3583133.3596401 | |
dc.relation.uri | https://dl.acm.org/doi/10.1145/3583133.3596401 | |
dc.relation.uri | https://dl.acm.org/doi/pdf/10.1145/3583133.3596401 | |
dc.subject | Large Language Models | en |
dc.subject | metaheuristic optimization | en |
dc.subject | swarm algorithms | en |
dc.subject | algorithm generation | en |
dc.subject | decomposition and construction | en |
dc.subject | GPT-4 | en |
dc.description.abstract | In this paper, we investigate the potential of using Large Language Models (LLMs) such as GPT-4 to generate novel hybrid swarm intelligence optimization algorithms. We use the LLM to identify and decompose six well-performing swarm algorithms for continuous optimization: Particle Swarm Optimization (PSO), Cuckoo Search (CS), Artificial Bee Colony (ABC), Grey Wolf Optimizer (GWO), Self-Organizing Migrating Algorithm (SOMA), and Whale Optimization Algorithm (WOA). We leverage GPT-4 to propose a hybrid algorithm that combines the strengths of these techniques for two distinct use-case scenarios. Our focus is on the process itself and various challenges that emerge during the use of GPT-4 to fulfill a series of set tasks. Furthermore, we discuss the potential impact of LLM-generated algorithms in the metaheuristics domain and explore future research directions. | en |
utb.faculty | Faculty of Applied Informatics | |
dc.identifier.uri | http://hdl.handle.net/10563/1011662 | |
utb.identifier.obdid | 43885028 | |
utb.identifier.scopus | 2-s2.0-85168999838 | |
utb.identifier.wok | 001117972600294 | |
utb.source | d-scopus | |
dc.date.accessioned | 2023-12-05T11:36:25Z | |
dc.date.available | 2023-12-05T11:36:25Z | |
dc.description.sponsorship | Faculty of Applied Informatics, Tomas Bata University in Zlin; Tomas Bata University in Zlin, TBU, (IGA/CebiaTech/2023/004) | |
utb.contributor.internalauthor | Pluháček, Michal | |
utb.contributor.internalauthor | Kazíková, Anežka | |
utb.contributor.internalauthor | Kadavý, Tomáš | |
utb.contributor.internalauthor | Viktorin, Adam | |
utb.contributor.internalauthor | Šenkeřík, Roman | |
utb.fulltext.dates | Published: 24 July 2023 | |
utb.fulltext.sponsorship | The research presented in this paper was partially supported by the Internal Grant Agency of the Tomas Bata University in Zlin, under project number IGA/CebiaTech/2023/004, and resources of A.I.Lab at the Faculty of Applied Informatics, Tomas Bata University in Zlin (ailab.fai.utb.cz). | |
utb.wos.affiliation | [Pluhacek, Michal; Kazikova, Anezka; Kadavy, Tomas; Viktorin, Adam; Senkerik, Roman] Tomas Bata Univ Zlin, Zlin, Czech Republic | |
utb.scopus.affiliation | Tomas Bata University Zlin, Zlin, Czech Republic | |
utb.fulltext.projects | IGA/CebiaTech/2023/004 |
Soubory | Velikost | Formát | Zobrazit |
---|---|---|---|
K tomuto záznamu nejsou připojeny žádné soubory. |