Publikace UTB
Repozitář publikační činnosti UTB

Leveraging Large Language Models for the generation of novel metaheuristic optimization algorithms

Repozitář DSpace/Manakin

Zobrazit minimální záznam


dc.title Leveraging Large Language Models for the generation of novel metaheuristic optimization algorithms en
dc.contributor.author Pluháček, Michal
dc.contributor.author Kazíková, Anežka
dc.contributor.author Kadavý, Tomáš
dc.contributor.author Viktorin, Adam
dc.contributor.author Šenkeřík, Roman
dc.relation.ispartof GECCO 2023 Companion - Proceedings of the 2023 Genetic and Evolutionary Computation Conference Companion
dc.identifier.isbn 979-840070120-7
dc.date.issued 2023-07-24
dc.citation.spage 1812
dc.citation.epage 1820
dc.event.title 2023 Genetic and Evolutionary Computation Conference Companion, GECCO 2023 Companion
dc.event.location Lisbon
utb.event.state-en Portugal
utb.event.state-cs Portugalsko
dc.event.sdate 2023-07-15
dc.event.edate 2023-07-19
dc.type conferenceObject
dc.language.iso en
dc.publisher Association for Computing Machinery, Inc
dc.identifier.doi 10.1145/3583133.3596401
dc.relation.uri https://dl.acm.org/doi/10.1145/3583133.3596401
dc.relation.uri https://dl.acm.org/doi/pdf/10.1145/3583133.3596401
dc.subject Large Language Models en
dc.subject metaheuristic optimization en
dc.subject swarm algorithms en
dc.subject algorithm generation en
dc.subject decomposition and construction en
dc.subject GPT-4 en
dc.description.abstract In this paper, we investigate the potential of using Large Language Models (LLMs) such as GPT-4 to generate novel hybrid swarm intelligence optimization algorithms. We use the LLM to identify and decompose six well-performing swarm algorithms for continuous optimization: Particle Swarm Optimization (PSO), Cuckoo Search (CS), Artificial Bee Colony (ABC), Grey Wolf Optimizer (GWO), Self-Organizing Migrating Algorithm (SOMA), and Whale Optimization Algorithm (WOA). We leverage GPT-4 to propose a hybrid algorithm that combines the strengths of these techniques for two distinct use-case scenarios. Our focus is on the process itself and various challenges that emerge during the use of GPT-4 to fulfill a series of set tasks. Furthermore, we discuss the potential impact of LLM-generated algorithms in the metaheuristics domain and explore future research directions. en
utb.faculty Faculty of Applied Informatics
dc.identifier.uri http://hdl.handle.net/10563/1011662
utb.identifier.obdid 43885028
utb.identifier.scopus 2-s2.0-85168999838
utb.identifier.wok 001117972600294
utb.source d-scopus
dc.date.accessioned 2023-12-05T11:36:25Z
dc.date.available 2023-12-05T11:36:25Z
dc.description.sponsorship Faculty of Applied Informatics, Tomas Bata University in Zlin; Tomas Bata University in Zlin, TBU, (IGA/CebiaTech/2023/004)
utb.contributor.internalauthor Pluháček, Michal
utb.contributor.internalauthor Kazíková, Anežka
utb.contributor.internalauthor Kadavý, Tomáš
utb.contributor.internalauthor Viktorin, Adam
utb.contributor.internalauthor Šenkeřík, Roman
utb.fulltext.dates Published: 24 July 2023
utb.fulltext.sponsorship The research presented in this paper was partially supported by the Internal Grant Agency of the Tomas Bata University in Zlin, under project number IGA/CebiaTech/2023/004, and resources of A.I.Lab at the Faculty of Applied Informatics, Tomas Bata University in Zlin (ailab.fai.utb.cz).
utb.wos.affiliation [Pluhacek, Michal; Kazikova, Anezka; Kadavy, Tomas; Viktorin, Adam; Senkerik, Roman] Tomas Bata Univ Zlin, Zlin, Czech Republic
utb.scopus.affiliation Tomas Bata University Zlin, Zlin, Czech Republic
utb.fulltext.projects IGA/CebiaTech/2023/004
Find Full text

Soubory tohoto záznamu

Soubory Velikost Formát Zobrazit

K tomuto záznamu nejsou připojeny žádné soubory.

Zobrazit minimální záznam