Publikace UTB
Repozitář publikační činnosti UTB

Software cost estimation using neural networks

Repozitář DSpace/Manakin

Zobrazit minimální záznam


dc.title Software cost estimation using neural networks en
dc.contributor.author Ramaekers, Robin
dc.contributor.author Šilhavý, Radek
dc.contributor.author Šilhavý, Petr
dc.relation.ispartof Lecture Notes in Networks and Systems
dc.identifier.issn 2367-3370 Scopus Sources, Sherpa/RoMEO, JCR
dc.identifier.isbn 978-303135310-9
dc.date.issued 2023
utb.relation.volume 722 LNNS
dc.citation.spage 831
dc.citation.epage 847
dc.event.title 12th International Conference on Computer Science Online Conference, CSOC 2023
dc.event.location online
dc.event.sdate 2023-04-03
dc.event.edate 2023-04-05
dc.type conferenceObject
dc.language.iso en
dc.publisher Springer Science and Business Media Deutschland GmbH
dc.identifier.doi 10.1007/978-3-031-35311-6_77
dc.relation.uri https://link.springer.com/chapter/10.1007/978-3-031-35311-6_77
dc.subject artificial intelligence en
dc.subject deep reinforcement learning en
dc.subject machine learning en
dc.subject neural networks en
dc.subject software cost estimation en
dc.description.abstract Software Cost Estimation (SCE) is one of the most vital parts when starting a new software engineering project; it helps with allocating resources, managing risks, making informed decisions, and stands in correlation with the success or the failure of a project. Because Software Cost Estimation (SCE) is prone to human bias, solutions started being researched with the aid of Artificial Intelligence (AI) and Machine Learning (ML). This paper will investigate the importance of Software Cost Estimation (SCE). Further, the existing taxonomies and methodologies regarding using neural networks with Software Cost estimation will be compared (COCOMO, GEHO-ANN, OLCE, and -ANN-NEAT). This will be done using evaluation metrics such as RMSE, MMRE, PRED, MAE, etc. After, further research is proposed on why using Deep Reinforcement Learning (DRL) could be very beneficial for developing Software Cost Prediction Models. This technique combines Deep Learning (DL) and Machine Learning (ML) and can solve complex tasks with many variables and a rapidly developing environment. en
utb.faculty Faculty of Applied Informatics
dc.identifier.uri http://hdl.handle.net/10563/1011709
utb.identifier.obdid 43885214
utb.identifier.scopus 2-s2.0-85171369946
utb.source d-scopus
dc.date.accessioned 2023-12-05T11:36:33Z
dc.date.available 2023-12-05T11:36:33Z
utb.contributor.internalauthor Šilhavý, Radek
utb.contributor.internalauthor Šilhavý, Petr
utb.fulltext.sponsorship -
utb.scopus.affiliation Thomas More Geel, Kleinhoefstraat 4, Geel, 2440, Belgium; Tomas Bata University in Zlin, Nad Stranemi 4511, Zlin, 760 05, Czech Republic
utb.fulltext.projects -
Find Full text

Soubory tohoto záznamu

Soubory Velikost Formát Zobrazit

K tomuto záznamu nejsou připojeny žádné soubory.

Zobrazit minimální záznam