Publikace UTB
Repozitář publikační činnosti UTB

Evaluating kernel functions in software effort estimation: A comparative study of moving window and spectral clustering models across diverse datasets

Repozitář DSpace/Manakin

Zobrazit minimální záznam


dc.title Evaluating kernel functions in software effort estimation: A comparative study of moving window and spectral clustering models across diverse datasets en
dc.contributor.author Šilhavý, Petr
dc.contributor.author Šilhavý, Radek
dc.relation.ispartof IEEE Access
dc.identifier.issn 2169-3536 Scopus Sources, Sherpa/RoMEO, JCR
dc.date.issued 2023
utb.relation.volume 11
dc.citation.spage 126335
dc.citation.epage 126351
dc.type article
dc.language.iso en
dc.publisher Institute of Electrical and Electronics Engineers Inc.
dc.identifier.doi 10.1109/ACCESS.2023.3329369
dc.relation.uri https://ieeexplore.ieee.org/document/10304119
dc.subject software effort estimation en
dc.subject kernel function en
dc.subject moving windows en
dc.subject spectral clustering en
dc.subject functional points en
dc.subject use case points en
dc.description.abstract This study embarks on an in-depth analysis of the performance of various kernel functions, namely uniform, epanechnikov, triangular, and gaussian, in window-based and spectral clustering-based models. Employing seven distinct datasets, our approach evaluated both window sizes (25%, 50%, 75%, and 100%) and clustering clusters (ranging from 1 to 4). The kernel functions served as weighting functions for regression models, leading to the creation of 192 window-based and 192 clustering-based models. Our analysis underscores the dominance of the uniform kernel function. In most models where the Pred(0.25) was maximal and the Mean Absolute Error was minimal, the uniform kernel function was predominantly utilized. Further, our results exhibit varying outcomes between moving windows and spectral clustering across datasets. For instance, in the fpa-china dataset, while moving windows with a 50% size displayed no significant superiority over spectral-clustering with 1 cluster, spectral-clustering (1 cluster) demonstrated a significantly enhanced performance. However, in datasets like fpa-kitchenham, neither approach proved to be significantly better. This comprehensive exploration into the efficiency of kernel functions in moving windows and spectral-clustering models provides valuable insights for future research and applications in data modelling and analysis. en
utb.faculty Faculty of Applied Informatics
dc.identifier.uri http://hdl.handle.net/10563/1011782
utb.identifier.obdid 43885048
utb.identifier.scopus 2-s2.0-85177567332
utb.identifier.wok 001111143300001
utb.source j-scopus
dc.date.accessioned 2024-02-02T10:29:27Z
dc.date.available 2024-02-02T10:29:27Z
dc.description.sponsorship Faculty of Applied Informatics, Tomas Bata University, (RVO/FAI/2021/002)
dc.description.sponsorship Faculty of Applied Informatics, Tomas Bata University in Zlin [RVO/FAI/2021/002]
dc.rights Attribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.access openAccess
utb.contributor.internalauthor Šilhavý, Petr
utb.contributor.internalauthor Šilhavý, Radek
utb.fulltext.sponsorship This work was supported by the Faculty of Applied Informatics, Tomas Bata University in Zlín, under Project RVO/FAI/2021/002.
utb.wos.affiliation [Silhavy, Petr; Silhavy, Radek] Tomas Bata Univ, Fac Appl Informat, Zlin 76001, Czech Republic
utb.scopus.affiliation Tomas Bata University in Zlín, Faculty of Applied Informatics, Zlín, 76001, Czech Republic
utb.fulltext.projects RVO/FAI/2021/002
Find Full text

Soubory tohoto záznamu

Zobrazit minimální záznam

Attribution-NonCommercial-NoDerivatives 4.0 International Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je Attribution-NonCommercial-NoDerivatives 4.0 International