Kontaktujte nás | Jazyk: čeština English
dc.title | Physicochemical characterisation of polysaccharide films with embedded bioactive substances | en |
dc.contributor.author | Gautam, Shweta | |
dc.contributor.author | Lapčík, Lubomír | |
dc.contributor.author | Lapčíková, Barbora | |
dc.contributor.author | Řepka, David | |
dc.contributor.author | Szyk-Warszyńska, Lilianna | |
dc.relation.ispartof | Foods | |
dc.identifier.issn | 2304-8158 Scopus Sources, Sherpa/RoMEO, JCR | |
dc.date.issued | 2023 | |
utb.relation.volume | 12 | |
utb.relation.issue | 24 | |
dc.type | article | |
dc.language.iso | en | |
dc.publisher | Multidisciplinary Digital Publishing Institute (MDPI) | |
dc.identifier.doi | 10.3390/foods12244454 | |
dc.relation.uri | https://www.mdpi.com/2304-8158/12/24/4454 | |
dc.subject | crosslinking | en |
dc.subject | encapsulation | en |
dc.subject | carboxymethylcellulose | en |
dc.subject | citric acid | en |
dc.subject | edible films | en |
dc.description.abstract | In this study, sodium carboxymethyl cellulose (CMCNa) bioactive films, crosslinked with citric acid (CA), were prepared and comprehensively examined for their suitability in various applications, focusing on food packaging. The films displayed favourable properties, including appropriate thickness, transparency, and moisture content, essential for packaging purposes. Moreover, the films exhibited excellent moisture absorption rate and barrier properties, attributed to the high concentration of CMCNa and the inclusion of a CA. These films presented no significant effect of crosslinking and bioactive components on their mechanical strength, as evidenced by tensile strength and elongation at break values. Thermal stability was demonstrated in the distinct weight loss events at different temperature ranges, with crosslinking contributing to slightly enhanced thermal performance. Furthermore, the films showed varying antioxidant activity levels, influenced by temperature and the solubility of the films in different media, indicating their potential for diverse applications. Overall, these bioactive films showed promise as versatile materials with desirable properties for food packaging and related applications, where the controlled release of bioactive components is advantageous for enhancing the shelf life and safety of food products. These findings contribute to the growing research in biodegradable and functional food packaging materials. | en |
utb.faculty | Faculty of Technology | |
dc.identifier.uri | http://hdl.handle.net/10563/1011808 | |
utb.identifier.obdid | 43884730 | |
utb.identifier.scopus | 2-s2.0-85180657177 | |
utb.identifier.wok | 001131367800001 | |
utb.identifier.pubmed | 38137258 | |
utb.source | j-scopus | |
dc.date.accessioned | 2024-02-14T13:51:48Z | |
dc.date.available | 2024-02-14T13:51:48Z | |
dc.description.sponsorship | Tomas Bata University in Zlín, TBU, (IGA/FT/2023/007); Univerzita Palackého v Olomouci, UP, (IGA_PRF_2023_024) | |
dc.rights | Attribution 4.0 International | |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | |
dc.rights.access | openAccess | |
utb.ou | Department of Foodstuff Technology | |
utb.contributor.internalauthor | Gautam, Shweta | |
utb.contributor.internalauthor | Lapčík, Lubomír | |
utb.contributor.internalauthor | Lapčíková, Barbora | |
utb.fulltext.sponsorship | This research was funded by Tomas Bata University in Zlín (grant no. IGA/FT/2023/007) and by Palacky University in Olomouc (grant no. IGA_PRF_2023_024). | |
utb.wos.affiliation | [Gautam, Shweta; Lapcik, Lubomir; Lapcikova, Barbora] Tomas Bata Univ Zlin, Fac Technol, Dept Foodstuff Technol, Nam TG Masaryka 5555, Zlin 76001, Czech Republic; [Lapcik, Lubomir; Lapcikova, Barbora; Repka, David] Palacky Univ Olomouc, Fac Sci, Dept Phys Chem, 17 Listopadu 12, Olomouc 77146, Czech Republic; [Szyk-Warszynska, Lilianna] Polish Acad Sci, Jerzy Haber Inst Catalysis & Surface Chem, Niezapominajek 8, PL-30239 Krakow, Poland | |
utb.scopus.affiliation | Department of Foodstuff Technology, Faculty of Technology, Tomas Bata University in Zlín, Nam. T.G. Masaryka, Zlín, 5555, 760 01, Czech Republic; Department of Physical Chemistry, Faculty of Science, Palacky University in Olomouc, 17. Listopadu 12, Olomouc, 771 46, Czech Republic; Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, Kraków, 30-239, Poland | |
utb.fulltext.projects | IGA/FT/2023/007 | |
utb.fulltext.projects | IGA_PRF_2023_024 |