Publikace UTB
Repozitář publikační činnosti UTB

The implementation of neural networks for polymer mold surface evaluation

Repozitář DSpace/Manakin

Zobrazit minimální záznam


dc.title The implementation of neural networks for polymer mold surface evaluation en
dc.contributor.author Vrbová, Hana
dc.contributor.author Kubišová, Milena
dc.contributor.author Měřínská, Dagmar
dc.contributor.author Novák, Martin
dc.contributor.author Pata, Vladimír
dc.contributor.author Knedlová, Jana
dc.contributor.author Sedlačík, Michal
dc.contributor.author Šuba, Oldřich
dc.relation.ispartof Micromachines
dc.identifier.issn 2072-666X Scopus Sources, Sherpa/RoMEO, JCR
dc.date.issued 2024
utb.relation.volume 15
utb.relation.issue 1
dc.type article
dc.language.iso en
dc.publisher Multidisciplinary Digital Publishing Institute (MDPI)
dc.identifier.doi 10.3390/mi15010102
dc.relation.uri https://www.mdpi.com/2072-666X/15/1/102
dc.relation.uri https://doi.org/10.3390/mi15010102
dc.subject surface quality en
dc.subject roughness parameters en
dc.subject nonlinear regression en
dc.subject perceptron en
dc.subject neural network en
dc.description.abstract This paper presents the measurement and evaluation of the surfaces of molds produced using additive technologies. This is an emerging trend in mold production. The surfaces of such molds must be treated, usually using laser-based alternative machining methods. Regular evaluation is necessary because of the gradually deteriorating quality of the mold surface. However, owing to the difficulty in scanning the original surface of the injection mold, it is necessary to perform surface replication. Therefore, this study aims to describe the production of surface replicas for in-house developed polymer molds together with the determination of suitable descriptive parameters, the method of comparing variances, and the mean values for the surface evaluation. Overall, this study presents a new summary of the evaluation process of replicas of the surfaces of polymer molds. The nonlinear regression methodology provides the corresponding functional dependencies between the relevant parameters. The statistical significance of a neural network with two hidden layers based on the principle of Rosenblatt’s perceptron has been proposed and verified. Additionally, machine learning was utilized to better compare the original surface and its replica. en
utb.faculty Faculty of Technology
utb.faculty University Institute
dc.identifier.uri http://hdl.handle.net/10563/1011884
utb.identifier.scopus 2-s2.0-85183321522
utb.identifier.wok 001150888500001
utb.identifier.pubmed 38258221
utb.source j-scopus
dc.date.accessioned 2024-02-14T13:51:55Z
dc.date.available 2024-02-14T13:51:55Z
dc.description.sponsorship Tomas Bata University in Zlín, TBU, (IGA/FT/2024/002)
dc.rights Attribution 4.0 International
dc.rights.uri http://creativecommons.org/licenses/by/4.0/
dc.rights.access openAccess
utb.ou Centre of Polymer Systems
utb.contributor.internalauthor Vrbová, Hana
utb.contributor.internalauthor Kubišová, Milena
utb.contributor.internalauthor Měřínská, Dagmar
utb.contributor.internalauthor Novák, Martin
utb.contributor.internalauthor Pata, Vladimír
utb.contributor.internalauthor Knedlová, Jana
utb.contributor.internalauthor Sedlačík, Michal
utb.contributor.internalauthor Šuba, Oldřich
utb.fulltext.sponsorship This work and the project were realized with financial support from the internal grant of TBU in Zlin No. IGA/FT/2024/002, funded by the resources of specific university research.
utb.wos.affiliation [Vrbova, Hana; Kubisova, Milena; Merinska, Dagmar; Novak, Martin; Pata, Vladimir; Knedlova, Jana; Sedlacik, Michal; Suba, Oldrich] Tomas Bata Univ Zlin, Fac Technol, Zlin 76001, Czech Republic; [Sedlacik, Michal] Univ Inst, Tomas Bata Univ Zlin, Ctr Polymer Syst, Trida T Bati 5678, Zlin 76001, Czech Republic
utb.scopus.affiliation Faculty of Technology, Tomas Bata University in Zlin, Vavreckova 5669, Zlin, 760 01, Czech Republic; Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Trida T. Bati 5678, Zlin, 760 01, Czech Republic
utb.fulltext.projects IGA/FT/2024/002
Find Full text

Soubory tohoto záznamu

Zobrazit minimální záznam

Attribution 4.0 International Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je Attribution 4.0 International