Kontaktujte nás | Jazyk: čeština English
dc.title | Investigating the potential of AI-driven innovations for enhancing differential evolution in optimization tasks | en |
dc.contributor.author | Pluháček, Michal | |
dc.contributor.author | Kazíková, Anežka | |
dc.contributor.author | Viktorin, Adam | |
dc.contributor.author | Kadavý, Tomáš | |
dc.contributor.author | Šenkeřík, Roman | |
dc.relation.ispartof | Conference Proceedings - IEEE International Conference on Systems, Man and Cybernetics | |
dc.identifier.issn | 1062-922X Scopus Sources, Sherpa/RoMEO, JCR | |
dc.identifier.isbn | 979-835033702-0 | |
dc.date.issued | 2023 | |
dc.citation.spage | 1070 | |
dc.citation.epage | 1075 | |
dc.event.title | 2023 IEEE International Conference on Systems, Man, and Cybernetics, SMC 2023 | |
dc.event.location | hybrid, Honolulu | |
utb.event.state-en | United States | |
utb.event.state-cs | Spojené státy americké | |
dc.event.sdate | 2023-10-01 | |
dc.event.edate | 2023-10-04 | |
dc.type | conferenceObject | |
dc.language.iso | en | |
dc.publisher | Institute of Electrical and Electronics Engineers Inc. | |
dc.identifier.doi | 10.1109/SMC53992.2023.10394233 | |
dc.relation.uri | https://ieeexplore.ieee.org/document/10394233 | |
dc.relation.uri | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10394233 | |
dc.description.abstract | In recent years, artificial intelligence (AI) and machine learning have demonstrated remarkable potential in various application domains, including optimization. This study investigates the process of leveraging AI, particularly large language models (LLMs), to enhance the performance of metaheuristics, with a focus on the well-established Differential Evolution (DE) algorithm. We employ GPT, a state-of-the-art LLM, to propose an improved mutation strategy based on a dynamic switching mechanism, which is then integrated into the DE algorithm. Throughout the investigation, we also observe and analyze any errors or limitations the LLM might exhibit. We conduct extensive experiments on a comprehensive set of 30 benchmark functions, comparing the performance of the proposed AI-inspired strategy with the standard DE algorithm. The results suggest that the AI-driven dynamic switching mutation strategy provides a competitive edge in terms of solution quality, showcasing the potential of using AI to guide the development of improved optimization algorithms. This work not only highlights the effectiveness of the proposed strategy but also contributes to the understanding of the process of using LLMs for enhancing metaheuristics and the challenges involved therein. | en |
utb.faculty | Faculty of Applied Informatics | |
dc.identifier.uri | http://hdl.handle.net/10563/1011945 | |
utb.identifier.obdid | 43885274 | |
utb.identifier.scopus | 2-s2.0-85187265107 | |
utb.identifier.coden | PICYE | |
utb.source | d-scopus | |
dc.date.accessioned | 2024-04-17T13:13:00Z | |
dc.date.available | 2024-04-17T13:13:00Z | |
dc.description.sponsorship | Faculty of Applied Informatics, Tomas Bata University in Zlin; Tomas Bata University in Zlín, TBU, (IGA/CebiaTech/2023/004) | |
utb.contributor.internalauthor | Pluháček, Michal | |
utb.contributor.internalauthor | Kazíková, Anežka | |
utb.contributor.internalauthor | Viktorin, Adam | |
utb.contributor.internalauthor | Kadavý, Tomáš | |
utb.contributor.internalauthor | Šenkeřík, Roman | |
utb.fulltext.affiliation | Michal Pluhacek, Anezka Kazikova, Adam Viktorin, Tomas Kadavy and Roman Senkerik Faculty of Applied Informatics, Tomas Bata University in Zlin, nam. T. G. Masaryka 5555, 760 01 Zlin, Czech Republic pluhacek@utb.cz | |
utb.fulltext.sponsorship | The research presented in this paper was partially supported by: the Internal Grant Agency of the Tomas Bata University in Zlin, under project number IGA/CebiaTech/2023/004, and resources of A.I.Lab at the Faculty of Applied Informatics, Tomas Bata University in Zlin (ailab.fai.utb.cz). | |
utb.scopus.affiliation | Tomas Bata University in Zlin, Faculty of Applied Informatics, nam. T. G. Masaryka 5555, Zlín, 760 01, Czech Republic | |
utb.fulltext.projects | IGA/CebiaTech/2023/004 | |
utb.fulltext.faculty | Faculty of Applied Informatics | |
utb.fulltext.ou | - |