Publikace UTB
Repozitář publikační činnosti UTB

Enhancing software effort estimation with self-organizing migration algorithm: A comparative analysis of COCOMO models

Repozitář DSpace/Manakin

Zobrazit minimální záznam


dc.title Enhancing software effort estimation with self-organizing migration algorithm: A comparative analysis of COCOMO models en
dc.contributor.author Bajusová, Darina
dc.contributor.author Šilhavý, Petr
dc.contributor.author Šilhavý, Radek
dc.relation.ispartof IEEE Access
dc.identifier.issn 2169-3536 Scopus Sources, Sherpa/RoMEO, JCR
dc.date.issued 2024
utb.relation.volume 12
dc.citation.spage 67170
dc.citation.epage 67188
dc.type article
dc.language.iso en
dc.publisher Institute of Electrical and Electronics Engineers Inc.
dc.identifier.doi 10.1109/ACCESS.2024.3399060
dc.relation.uri https://ieeexplore.ieee.org/document/10526276
dc.relation.uri https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10526276
dc.subject software reliability en
dc.subject software effort estimation en
dc.subject COCOMO models en
dc.subject SOMA en
dc.subject metaheuristic optimization en
dc.description.abstract This study presents a comprehensive analysis of enhancing software effort estimation accuracy using a Self-Organizing Migration Algorithm (SOMA)-optimized Constructive Cost Model (COCOMO). By conducting a comparative study of traditional COCOMO models and SOMA-optimized variants across preprocessed datasets (NASA93, NASA63, NASA18, Kemerer, Miyazaki94, and Turkish), our research focuses on crucial evaluation metrics, including Mean Magnitude of Relative Error (MMRE), Prediction at 0.25 (PRED(0.25)), Mean Absolute Error (MAE), and Root Mean Square Error (RMSE). The analysis encompasses various configurations of COCOMO models—basic, intermediate, and post-architecture COCOMO II, supplemented with additional statistical testing and residual analysis for in-depth insights. The results demonstrate that the SOMA-optimized COCOMO models generally surpass traditional models in predictive accuracy, especially notable in metrics such as MMRE where an improvement of up to 12%, PRED(0.25) with an enhancement of 15%, MAE reduction by 18%, and a decrease in RMSE by 20% were observed. However, performance variances were identified in specific scenarios, highlighting areas for further refinement, particularly in large-scale estimations where residual plots suggested the potential for underestimation or overestimation. The study concludes that integrating the SOMA optimization algorithm into COCOMO models significantly enhances the accuracy of software effort estimations, providing valuable insights for future research to optimise estimations for larger projects and advance prediction models. This advancement addresses the technical challenge of parameter accuracy and offers a methodological improvement in model selection and application, underscoring the potential of metaheuristic optimization in software effort estimation. en
utb.faculty Faculty of Applied Informatics
dc.identifier.uri http://hdl.handle.net/10563/1012022
utb.identifier.scopus 2-s2.0-85193012866
utb.identifier.wok 001226070500001
utb.source j-scopus
dc.date.accessioned 2024-08-22T12:59:43Z
dc.date.available 2024-08-22T12:59:43Z
dc.description.sponsorship Faculty of Applied Informatics, Tomas Bata University in Zln,
dc.rights Attribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.access openAccess
utb.contributor.internalauthor Bajusová, Darina
utb.contributor.internalauthor Šilhavý, Petr
utb.contributor.internalauthor Šilhavý, Radek
utb.fulltext.sponsorship This work was supported in part by the Faculty of Applied Informatics, Tomas Bata University in Zlín, under Grant RVO/FAI/2024/002 and Grant IGA/CebiaTech/2023/004.
utb.wos.affiliation [Bajusova, Darina; Silhavy, Petr; Silhavy, Radek] Tomas Bata Univ Zlin, Fac Appl Informat, Zlin 76001, Czech Republic
utb.scopus.affiliation Faculty of Applied Informatics, Tomas Bata University in Zlin, Zlin, Czech Republic
utb.fulltext.projects RVO/FAI/2024/002
utb.fulltext.projects IGA/CebiaTech/2023/004
Find Full text

Soubory tohoto záznamu

Zobrazit minimální záznam

Attribution-NonCommercial-NoDerivatives 4.0 International Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je Attribution-NonCommercial-NoDerivatives 4.0 International