Publikace UTB
Repozitář publikační činnosti UTB

Artificial Size Slicing Aided Fine Tuning (ASSAFT) and Hyper Inference (ASSAHI) in tomato detection

Repozitář DSpace/Manakin

Zobrazit minimální záznam


dc.title Artificial Size Slicing Aided Fine Tuning (ASSAFT) and Hyper Inference (ASSAHI) in tomato detection en
dc.contributor.author Turečková, Alžběta
dc.contributor.author Tureček, Tomáš
dc.contributor.author Komínková Oplatková, Zuzana
dc.relation.ispartof Computers and Electronics in Agriculture
dc.identifier.issn 0168-1699 Scopus Sources, Sherpa/RoMEO, JCR
dc.identifier.issn 1872-7107 Scopus Sources, Sherpa/RoMEO, JCR
dc.date.issued 2024
utb.relation.volume 225
dc.type article
dc.language.iso en
dc.publisher Elsevier Sci Ltd
dc.identifier.doi 10.1016/j.compag.2024.109280
dc.relation.uri https://www.sciencedirect.com/science/article/pii/S0168169924006719
dc.relation.uri https://www.sciencedirect.com/science/article/pii/S0168169924006719/pdfft?md5=5a1c07ffdeec0b04adada3c80d18dd3c&pid=1-s2.0-S0168169924006719-main.pdf
dc.subject deep CNN en
dc.subject tomato detection en
dc.subject high-resolution images en
dc.subject crop yield estimation en
dc.subject artificial size slicing aided fine tuning (ASSAFT) en
dc.subject artificial size slicing aided hyper inference (ASSAHI) en
dc.description.abstract In the realm of precision agriculture, accurate harvest prediction is vital, as any discrepancies between forecasted and actual yields can lead to significant commercial and logistical challenges. This paper presents a novel deep learning-based approach for detecting and counting tomato fruits using advanced computer vision techniques. Building upon our previously established framework for ultra-wide image acquisition, this approach focuses on a unique patch-cropping technique tailored to tomatoes. This method aligns with the natural clustering of tomatoes, significantly improving object detection in greenhouse settings and thereby enhancing the model's performance in identifying individual fruits. The detection results exhibit a precision of 0.85, a recall of 0.93, and an F1-score of 0.89. Our approach's efficacy is also demonstrated through a case study on harvest prediction in a tomato greenhouse. The proposed methodology exhibited a lower error rate than the agronomist's estimates and proved its practical applicability. These findings suggest that our methodology could substantially contribute to optimizing sustainable farming practices, offering a promising direction for future research and application in the agricultural sector. en
utb.faculty Faculty of Applied Informatics
dc.identifier.uri http://hdl.handle.net/10563/1012122
utb.identifier.scopus 2-s2.0-85200482047
utb.identifier.wok 001292069400001
utb.identifier.coden CEAGE
utb.source J-wok
dc.date.accessioned 2025-01-15T08:08:08Z
dc.date.available 2025-01-15T08:08:08Z
dc.description.sponsorship Internal Grant Agency of Tomas Bata University, Czechia [IGA/CebiaTech/2023/004]; A.I.Lab at the Faculty of Applied Informatics, Tomas Bata University in Zlin
dc.description.sponsorship Fakulta aplikované informatiky, Univerzita Tomáše Bati ve Zlíně, FAI; Internal Grant Agency of Tomas Bata University, (IGA/CebiaTech/2023/004)
utb.contributor.internalauthor Turečková, Alžběta
utb.contributor.internalauthor Tureček, Tomáš
utb.contributor.internalauthor Komínková Oplatková, Zuzana
utb.fulltext.sponsorship This work was supported by Internal Grant Agency of Tomas Bata University, Czechia under project no. IGA/CebiaTech/2023/004, and further by the resources of A.I.Lab at the Faculty of Applied Informatics, Tomas Bata University in Zlin. During the preparation of this work, the authors used OpenAI ChatGTP in order to improve language and readability. After using this tool/service, the authors reviewed and edited the content as needed and take full responsibility for the content of the publication.
utb.wos.affiliation [Tureckova, Alzbeta; Turecek, Tomas; Oplatkova, Zuzana Kominkova] Tomas Bata Univ Zlin, Fac Appl Informat, Nam T G Masaryka 5555, Zlin 76001, Czech Republic
utb.scopus.affiliation Tomas Bata University in Zlin, Faculty of Applied Informatics, Nam. T. G. Masaryka 5555, Zlin, 760 01, Czech Republic
utb.fulltext.projects IGA/CebiaTech/2023/004
Find Full text

Soubory tohoto záznamu

Zobrazit minimální záznam