Publikace UTB
Repozitář publikační činnosti UTB

Harnessing the power of LLMs for service quality assessment from user-generated content

Repozitář DSpace/Manakin

Zobrazit minimální záznam


dc.title Harnessing the power of LLMs for service quality assessment from user-generated content en
dc.contributor.author Nejad Falatouri Moghaddam, Taha
dc.contributor.author Hrušecká, Denisa
dc.contributor.author Fischer, Thomas
dc.relation.ispartof IEEE Access
dc.identifier.issn 2169-3536 Scopus Sources, Sherpa/RoMEO, JCR
dc.date.issued 2024
utb.relation.volume 12
dc.citation.spage 99755
dc.citation.epage 99767
dc.type article
dc.language.iso en
dc.publisher IEEE-Inst Electrical Electronics Engineers Inc
dc.identifier.doi 10.1109/ACCESS.2024.3429290
dc.relation.uri https://ieeexplore.ieee.org/document/10599371
dc.relation.uri https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10599371
dc.subject natural language processing en
dc.subject task analysis en
dc.subject analytical models en
dc.subject sentiment analysis en
dc.subject companies en
dc.subject chatbots en
dc.subject Large Language Models en
dc.subject quality assessment en
dc.subject ChatGPT en
dc.subject cloud 3 en
dc.subject large language models (LLMs) en
dc.subject natural language processing (NLP) en
dc.subject sentiment analysis en
dc.subject service quality assessment en
dc.description.abstract Adopting Large Language Models (LLMs) creates opportunities for organizations to increase efficiency, particularly in sentiment analysis and information extraction tasks. This study explores the efficiency of LLMs in real-world applications, focusing on sentiment analysis and service quality dimension extraction from user-generated content (UGC). For this purpose, we compare the performance of two LLMs (ChatGPT 3.5 and Claude 3) and three traditional NLP methods using two datasets of customer reviews (one in English and one in Persian). The results indicate that LLMs can achieve notable accuracy in information extraction (76% accuracy for ChatGPT and 68% for Claude 3) and sentiment analysis (substantial agreement with human raters for ChatGPT and moderate agreement with human raters for Claude 3), demonstrating an improvement compared to other AI models. However, challenges persist, including discrepancies between model predictions and human judgments and limitations in extracting specific dimensions from unstructured text. Whereas LLMs can streamline the SQ assessment process, human supervision remains essential to ensure reliability. en
utb.faculty Faculty of Management and Economics
dc.identifier.uri http://hdl.handle.net/10563/1012170
utb.identifier.obdid 43885437
utb.identifier.scopus 2-s2.0-85199109175
utb.identifier.wok 001276352700001
utb.source J-wok
dc.date.accessioned 2025-01-15T08:08:11Z
dc.date.available 2025-01-15T08:08:11Z
dc.description.sponsorship Christian Doppler Research Association, Josef Ressel Centre for Predictive Value Network Intelligence (JRC PREVAIL)
dc.description.sponsorship Christian Doppler Forschungsgesellschaft, CDG
dc.rights Attribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.access openAccess
utb.contributor.internalauthor Nejad Falatouri Moghaddam, Taha
utb.contributor.internalauthor Hrušecká, Denisa
utb.fulltext.sponsorship This work was supported by the Christian Doppler Research Association as part of the Josef Ressel Centre for Predictive Value Network Intelligence (JRC PREVAIL).
utb.wos.affiliation [Falatouri, Taha; Hrusecka, Denisa] Tomas Bata Univ Zlin, Fac Management & Econ, Zlin 76001, Czech Republic; [Falatouri, Taha; Fischer, Thomas] Univ Appl Sci Upper Austria, Dept Logist, A-4400 Steyr, Austria; [Falatouri, Taha; Fischer, Thomas] Josef Ressel Ctr Predict Value Network Intelligenc, A-4400 Steyr, Austria
utb.scopus.affiliation Tomas Bata University in Zlín, Faculty of Management and Economics, Zlín, 760 01, Czech Republic; University of Applied Sciences Upper Austria, Department for Logistics, Steyr, 4400, Austria; Josef Ressel-Centre for Predictive Value Network Intelligence, Steyr, 4400, Austria
utb.fulltext.projects -
Find Full text

Soubory tohoto záznamu

Zobrazit minimální záznam

Attribution-NonCommercial-NoDerivatives 4.0 International Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je Attribution-NonCommercial-NoDerivatives 4.0 International