Publikace UTB
Repozitář publikační činnosti UTB

Enhancing a hierarchical evolutionary strategy using the nearest-better clustering

Repozitář DSpace/Manakin

Zobrazit minimální záznam


dc.title Enhancing a hierarchical evolutionary strategy using the nearest-better clustering en
dc.contributor.author Guzowski, Hubert
dc.contributor.author Smołka, Maciej
dc.contributor.author Pekař, Libor
dc.relation.ispartof Computational Science, ICCS 2024, pt III
dc.identifier.issn 0302-9743 Scopus Sources, Sherpa/RoMEO, JCR
dc.identifier.issn 1611-3349 Scopus Sources, Sherpa/RoMEO, JCR
dc.date.issued 2024
utb.relation.volume 14834
dc.citation.spage 423
dc.citation.epage 437
dc.event.title 24th International Conference on Computational Science (ICCS)
dc.event.location Malaga
utb.event.state-en Malaga
utb.event.state-cs Španělsko
dc.event.sdate 2024-07-02
dc.event.edate 2024-07-04
dc.type conferenceObject
dc.language.iso en
dc.publisher Springer International Publishing Ag
dc.identifier.doi 10.1007/978-3-031-63759-9_43
dc.relation.uri https://link.springer.com/chapter/10.1007/978-3-031-63759-9_43
dc.subject evolutionary algorithm en
dc.subject global optimization en
dc.subject continuous domain en
dc.subject Nearest-Better Clustering en
dc.description.abstract A straightforward way of solving global optimization problems is to find all local optima of the objective function. Therefore, the ability of detecting multiple local optima is a key feature of a practically usable global optimization method. One of such methods is a multi-population evolutionary strategy called the Hierarchic Memetic Strategy (HMS). Although HMS has already proven its global optimization capabilities there is an area for improvement. In this paper we show such an enhancement resulting from the application of the Nearest-Better Clustering. Results of experiments consisting both of curated benchmarks and a real-world inverse problem show that on average the performance is indeed improved compared to the baseline HMS and remains on par with state-of-the-art evolutionary global optimization methods. en
utb.faculty Faculty of Applied Informatics
dc.identifier.uri http://hdl.handle.net/10563/1012193
utb.identifier.scopus 2-s2.0-85199616163
utb.identifier.wok 001279325500043
utb.source C-wok
dc.date.accessioned 2025-01-15T08:08:16Z
dc.date.available 2025-01-15T08:08:16Z
dc.description.sponsorship Polish National Science Center [2020/39/I/ST7/02285]; Polish Ministry of Science and Education; Czech Science Foundation [CR 21-45465L]; TBU in Zlin [RVO/CEBIA/2021/001]
utb.contributor.internalauthor Pekař, Libor
utb.fulltext.sponsorship The research presented in this paper was partially supported by the Polish National Science Center under grant No. 2020/39/I/ST7/02285, by the funds of the Polish Ministry of Science and Education assigned to the AGH University of Krakow, by The Czech Science Foundation under grant No. GAČR 21-45465L, and the internal grant No. RVO/CEBIA/2021/001 by TBU in Zlín.
utb.wos.affiliation [Guzowski, Hubert; Smolka, Maciej] AGH Univ Krakow, Krakow, Poland; [Pekai, Libor] Tomas Bata Univ Zlin, Zlin, Czech Republic
utb.fulltext.projects 2020/39/I/ST7/02285
utb.fulltext.projects GAČR 21-45465L
utb.fulltext.projects RVO/CEBIA/2021/001
Find Full text

Soubory tohoto záznamu

Soubory Velikost Formát Zobrazit

K tomuto záznamu nejsou připojeny žádné soubory.

Zobrazit minimální záznam