Kontaktujte nás | Jazyk: čeština English
dc.title | Enhancing a hierarchical evolutionary strategy using the nearest-better clustering | en |
dc.contributor.author | Guzowski, Hubert | |
dc.contributor.author | Smołka, Maciej | |
dc.contributor.author | Pekař, Libor | |
dc.relation.ispartof | Computational Science, ICCS 2024, pt III | |
dc.identifier.issn | 0302-9743 Scopus Sources, Sherpa/RoMEO, JCR | |
dc.identifier.issn | 1611-3349 Scopus Sources, Sherpa/RoMEO, JCR | |
dc.date.issued | 2024 | |
utb.relation.volume | 14834 | |
dc.citation.spage | 423 | |
dc.citation.epage | 437 | |
dc.event.title | 24th International Conference on Computational Science (ICCS) | |
dc.event.location | Malaga | |
utb.event.state-en | Malaga | |
utb.event.state-cs | Španělsko | |
dc.event.sdate | 2024-07-02 | |
dc.event.edate | 2024-07-04 | |
dc.type | conferenceObject | |
dc.language.iso | en | |
dc.publisher | Springer International Publishing Ag | |
dc.identifier.doi | 10.1007/978-3-031-63759-9_43 | |
dc.relation.uri | https://link.springer.com/chapter/10.1007/978-3-031-63759-9_43 | |
dc.subject | evolutionary algorithm | en |
dc.subject | global optimization | en |
dc.subject | continuous domain | en |
dc.subject | Nearest-Better Clustering | en |
dc.description.abstract | A straightforward way of solving global optimization problems is to find all local optima of the objective function. Therefore, the ability of detecting multiple local optima is a key feature of a practically usable global optimization method. One of such methods is a multi-population evolutionary strategy called the Hierarchic Memetic Strategy (HMS). Although HMS has already proven its global optimization capabilities there is an area for improvement. In this paper we show such an enhancement resulting from the application of the Nearest-Better Clustering. Results of experiments consisting both of curated benchmarks and a real-world inverse problem show that on average the performance is indeed improved compared to the baseline HMS and remains on par with state-of-the-art evolutionary global optimization methods. | en |
utb.faculty | Faculty of Applied Informatics | |
dc.identifier.uri | http://hdl.handle.net/10563/1012193 | |
utb.identifier.scopus | 2-s2.0-85199616163 | |
utb.identifier.wok | 001279325500043 | |
utb.source | C-wok | |
dc.date.accessioned | 2025-01-15T08:08:16Z | |
dc.date.available | 2025-01-15T08:08:16Z | |
dc.description.sponsorship | Polish National Science Center [2020/39/I/ST7/02285]; Polish Ministry of Science and Education; Czech Science Foundation [CR 21-45465L]; TBU in Zlin [RVO/CEBIA/2021/001] | |
utb.contributor.internalauthor | Pekař, Libor | |
utb.fulltext.sponsorship | The research presented in this paper was partially supported by the Polish National Science Center under grant No. 2020/39/I/ST7/02285, by the funds of the Polish Ministry of Science and Education assigned to the AGH University of Krakow, by The Czech Science Foundation under grant No. GAČR 21-45465L, and the internal grant No. RVO/CEBIA/2021/001 by TBU in Zlín. | |
utb.wos.affiliation | [Guzowski, Hubert; Smolka, Maciej] AGH Univ Krakow, Krakow, Poland; [Pekai, Libor] Tomas Bata Univ Zlin, Zlin, Czech Republic | |
utb.fulltext.projects | 2020/39/I/ST7/02285 | |
utb.fulltext.projects | GAČR 21-45465L | |
utb.fulltext.projects | RVO/CEBIA/2021/001 |
Soubory | Velikost | Formát | Zobrazit |
---|---|---|---|
K tomuto záznamu nejsou připojeny žádné soubory. |