Publikace UTB
Repozitář publikační činnosti UTB

Enhancing software effort estimation through influencers-based project similarity measurement

Repozitář DSpace/Manakin

Zobrazit minimální záznam


dc.title Enhancing software effort estimation through influencers-based project similarity measurement en
dc.contributor.author Ho, Le Thi Kim Nhung
dc.contributor.author Šilhavý, Petr
dc.contributor.author Šilhavý, Radek
dc.relation.ispartof Procedia Computer Science
dc.identifier.issn 1877-0509 Scopus Sources, Sherpa/RoMEO, JCR
dc.date.issued 2024
utb.relation.volume 246
utb.relation.issue C
dc.citation.spage 3256
dc.citation.epage 3264
dc.event.title 28th International Conference on Knowledge Based and Intelligent information and Engineering Systems, KES 2024
dc.event.location Seville
utb.event.state-en Spain
utb.event.state-cs Španělsko
dc.event.sdate 2022-11-11
dc.event.edate 2022-11-12
dc.type conferenceObject
dc.language.iso en
dc.publisher Elsevier B.V.
dc.identifier.doi 10.1016/j.procs.2024.09.314
dc.relation.uri https://www.sciencedirect.com/science/article/pii/S1877050924023366
dc.subject data quality ratings en
dc.subject software effort estimation en
dc.subject software project similarity en
dc.description.abstract This paper introduces a novel methodology for enhancing software effort estimation accuracy by incorporating observed ratings into measuring project similarity. Unlike traditional methods that rely only on historical project data, the proposed method leverages observed ratings to identify influencers within the dataset. These influencers serve as critical references that guide the estimation process, transforming project representations into a fully specified space where the similarity between projects can be accurately calculated. The significance of our method is that it overcomes the limitations of existing effort estimation methods by incorporating additional contextual information provided by observed ratings, thereby improving effort estimation accuracy. Experimental results on the ISBSG dataset show that our approach achieved better Root Mean Squared Error (RMSE) results than other neighbor-based effort estimation methods. Our approach offers a promising avenue for more accurate and data-driven effort estimation, enabling informed decision-making in software project management. en
utb.faculty Faculty of Applied Informatics
dc.identifier.uri http://hdl.handle.net/10563/1012299
utb.identifier.scopus 2-s2.0-85213316429
utb.source d-scopus
dc.date.accessioned 2025-01-30T10:36:20Z
dc.date.available 2025-01-30T10:36:20Z
dc.description.sponsorship Tomas Bata University in Zlin, Faculty of Applied Informatics, (RVO/FAI/2021/002, IGA/ CebiaTech/2022/001)
dc.rights Attribution 4.0 International
dc.rights.uri http://creativecommons.org/licenses/by/4.0/
dc.rights.access openAccess
utb.contributor.internalauthor Ho, Le Thi Kim Nhung
utb.contributor.internalauthor Šilhavý, Petr
utb.contributor.internalauthor Šilhavý, Radek
utb.fulltext.sponsorship This work was partly supported by the Tomas Bata University in Zlin, Faculty of Applied Informatics under Grant No. RVO/FAI/2021/002 and IGA/ CebiaTech/2022/001.
utb.scopus.affiliation Faculty of Applied Informatics, Tomas Bata University in Zlin, Zlin, 760 01, Czech Republic
utb.fulltext.projects RVO/FAI/2021/002
utb.fulltext.projects IGA/ CebiaTech/2022/001
Find Full text

Soubory tohoto záznamu

Soubory Velikost Formát Zobrazit

K tomuto záznamu nejsou připojeny žádné soubory.

Zobrazit minimální záznam

Attribution 4.0 International Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je Attribution 4.0 International