Publikace UTB
Repozitář publikační činnosti UTB

Wearable sensors and computational intelligence in alpine skiing analysis

Repozitář DSpace/Manakin

Zobrazit minimální záznam


dc.title Wearable sensors and computational intelligence in alpine skiing analysis en
dc.contributor.author Procházka, Aleš
dc.contributor.author Charvátová, Hana
dc.relation.ispartof IEEE Access
dc.identifier.issn 2169-3536 Scopus Sources, Sherpa/RoMEO, JCR
dc.date.issued 2025
utb.relation.volume 13
dc.citation.spage 70414
dc.citation.epage 70421
dc.type article
dc.language.iso en
dc.publisher Institute of Electrical and Electronics Engineers Inc.
dc.identifier.doi 10.1109/ACCESS.2025.3562686
dc.relation.uri https://ieeexplore.ieee.org/document/10971401
dc.relation.uri https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10971401
dc.subject accelerometers en
dc.subject alpine skiing en
dc.subject computational intelligence en
dc.subject gyroscopes en
dc.subject physical activity monitoring en
dc.subject wearable sensors en
dc.description.abstract The integration of wearable sensors with artificial intelligence forms the base for analyzing physical activities through digital signal processing, numerical methods, and machine learning. Computational intelligence and communication technologies enable personalized monitoring, training, and rehabilitation, with applications in sports, neurology, and biomedicine. This paper focuses on motion analysis in alpine skiing using real accelerometric, gyroscopic, positioning, and video data to evaluate ski movement patterns. The proposed methodology employs functional transforms to estimate motion patterns and utilizes artificial intelligence for signal segmentation and feature classification related to lower limb movement. Machine learning results indicate differences in energy distribution before and after ski turns and demonstrate the feasibility of classifying associated motion patterns with accuracies of 98.1% and 90.7%, respectively, using a two-layer neural network. The interdisciplinary application of computational intelligence in this domain enhances motion analysis, injury prevention, and performance optimization. This study highlights the unifying role of digital signal processing, which uses similar mathematical tools across various applications. © 2013 IEEE. en
utb.faculty Faculty of Applied Informatics
dc.identifier.uri http://hdl.handle.net/10563/1012455
utb.identifier.scopus 2-s2.0-105003468740
utb.source j-scopus
dc.date.accessioned 2025-06-20T09:36:17Z
dc.date.available 2025-06-20T09:36:17Z
dc.description.sponsorship European Commission, EC, (CZ.02.01.01/00/22_008/0004590); European Commission, EC; Czech Ministry of Education, Youth, and Sports, (SENDISO-CZ.02.01.01/00/22_008/0004596)
dc.rights Attribution 4.0 International
dc.rights.uri http://creativecommons.org/licenses/by/4.0/
dc.rights.access openAccess
utb.contributor.internalauthor Charvátová, Hana
utb.fulltext.sponsorship This work was supported in part by European Union under the project Robotics and Advanced Industrial Production (ROBOPROX) in the Area of Machine Learning under Grant CZ.02.01.01/00/22_008/0004590; and in part by the Operational Program Johannes Amos Comenius funded by European Structural and Investment Funds and the Czech Ministry of Education, Youth, and Sports under Project SENDISO-CZ.02.01.01/00/22_008/0004596.
utb.scopus.affiliation University of Chemistry and Technology in Prague, Department of Mathematics, Informatics, and Cybernetics, Prague, 160 00, Czech Republic; Czech Technical University in Prague, Czech Institute of Informatics, Robotics, and Cybernetics, Prague, 160 00, Czech Republic; Tomas Bata University in Zlín, Faculty of Applied Informatics, Zlín, 760 01, Czech Republic
utb.fulltext.projects CZ.02.01.01/00/22_008/0004590
utb.fulltext.projects CZ.02.01.01/00/22_008/0004596
Find Full text

Soubory tohoto záznamu

Zobrazit minimální záznam

Attribution 4.0 International Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je Attribution 4.0 International