Kontaktujte nás | Jazyk: čeština English
dc.title | Completely lattice L-ordered sets with and without L-equality | en |
dc.contributor.author | Martinek, Pavel | |
dc.relation.ispartof | Fuzzy Sets and Systems | |
dc.identifier.issn | 0165-0114 Scopus Sources, Sherpa/RoMEO, JCR | |
dc.date.issued | 2011-03-16 | |
utb.relation.volume | 166 | |
utb.relation.issue | 1 | |
dc.citation.spage | 44 | |
dc.citation.epage | 55 | |
dc.type | article | |
dc.language.iso | en | |
dc.publisher | Elsevier Science B.V. | en |
dc.identifier.doi | 10.1016/j.fss.2010.11.003 | |
dc.relation.uri | https://www.sciencedirect.com/science/article/pii/S0165011410004549 | |
dc.subject | Fuzzy equality | en |
dc.subject | Fuzzy order | en |
dc.subject | L-ordered set | en |
dc.subject | Completely lattice L-ordered set | en |
dc.subject | Down-L-set | en |
dc.subject | Fuzzy concept lattice | en |
dc.subject | Dedekind-MacNeille completion | en |
dc.description.abstract | A relationship between L-order based on an L-equality and L-order based on crisp equality is explored in detail. This enables to clarify some properties of completely lattice L-ordered sets and generalize some related assertions. Namely, Belohlavek's main theorem of fuzzy concept lattices is generalized as well as his theorem dealing with Dedekind-MacNeille completion. Analogously, completion of an L-ordered set via completely lattice L-ordered set of all down-L-sets is described. (C) 2010 Elsevier B.V. All rights reserved. | en |
utb.faculty | Faculty of Applied Informatics | |
dc.identifier.uri | http://hdl.handle.net/10563/1002168 | |
utb.identifier.rivid | RIV/70883521:28140/11:00001030!RIV12-MSM-28140___ | |
utb.identifier.obdid | 43865171 | |
utb.identifier.scopus | 2-s2.0-78751645865 | |
utb.identifier.wok | 000287544500002 | |
utb.identifier.coden | FSSYD | |
utb.source | j-wok | |
dc.date.accessioned | 2011-08-16T15:06:36Z | |
dc.date.available | 2011-08-16T15:06:36Z | |
utb.contributor.internalauthor | Martinek, Pavel |