Contact Us | Language: čeština English
Title: | Completely lattice L-ordered sets with and without L-equality | ||||||||||
Author: | Martinek, Pavel | ||||||||||
Document type: | Peer-reviewed article (English) | ||||||||||
Source document: | Fuzzy Sets and Systems. 2011-03-16, vol. 166, issue 1, p. 44-55 | ||||||||||
ISSN: | 0165-0114 (Sherpa/RoMEO, JCR) | ||||||||||
Journal Impact
This chart shows the development of journal-level impact metrics in time
|
|||||||||||
DOI: | https://doi.org/10.1016/j.fss.2010.11.003 | ||||||||||
Abstract: | A relationship between L-order based on an L-equality and L-order based on crisp equality is explored in detail. This enables to clarify some properties of completely lattice L-ordered sets and generalize some related assertions. Namely, Belohlavek's main theorem of fuzzy concept lattices is generalized as well as his theorem dealing with Dedekind-MacNeille completion. Analogously, completion of an L-ordered set via completely lattice L-ordered set of all down-L-sets is described. (C) 2010 Elsevier B.V. All rights reserved. | ||||||||||
Full text: | https://www.sciencedirect.com/science/article/pii/S0165011410004549 | ||||||||||
Show full item record |