Contact Us | Language: čeština English
Title: | Influence of clay nanofillers on properties of ethylene-octene copolymers | ||||||||||
Author: | Tesaříková, Alice; Měřínská, Dagmar; Kalous, Jiří; Svoboda (FT), Petr | ||||||||||
Document type: | Peer-reviewed article (English) | ||||||||||
Source document: | Polymer Composites. 2017 | ||||||||||
ISSN: | 0272-8397 (Sherpa/RoMEO, JCR) | ||||||||||
Journal Impact
This chart shows the development of journal-level impact metrics in time
|
|||||||||||
DOI: | https://doi.org/10.1002/pc.24568 | ||||||||||
Abstract: | The article deals with preparation, properties and usage of ethylene-octene copolymers/clay films. Different properties of two types of ethylene-octene copolymers (Engage 8540 and Engage 8842) with 17 and 45 wt% of octene (EOC-17 and EOC-45) were compared in nanocomposites with two types of clays-Cloisite 93A and Dellite 67. The aim was to evaluate the influence of (nano)filler type on ethylene-octene nanocomposites properties. Mechanical and thermal properties, morphology, and UV radiation degradation were observed. Furthermore, permeability of three different gasses was determined. EOC nanocomposites perform a higher elongation at break, especially EOC-45. Dynamic Mechanical Analysis (DMA) showed an increase of E' modulus of all nanocomposites in a wide range of temperatures compared to pure EOC. Intercalation of nanofillers was studied by transmission electron microscopy (TEM) and X-ray diffraction (XRD). It has been proved that EOC-45 has a better dispersion EOC-17. DSC analysis showed a shift in a crystallization temperature for EOC-17, where the nanofiller acted as a nucleation agent due to the worse dispersion. Barrier properties were improved by almost 100% by addition of organoclay for all measured gasses; they were best for EOC-17 nanocomposites due to a higher crystallinity. XRD together with transmission electron microscopy (TEM) showed much better dispersion for EOC-45 nanocomposites. Fourier transform infrared spectroscopy (FTIR) and accelerated UV aging showed C=O peaks for EOC nanocomposites. © 2017 Society of Plastics Engineers. | ||||||||||
Full text: | https://onlinelibrary.wiley.com/doi/abs/10.1002/pc.24568 | ||||||||||
Show full item record |