Contact Us | Language: čeština English
Title: | PVP - CMC hydrogel: An excellent bioinspired and biocompatible scaffold for osseointegration | ||||||||||
Author: | Saha, Nabanita; Shah, Rushita; Gupta, Prerak; Mandal, Biman B.; Alexandrova, Radostina I.; Sikirić, Maja Dutour; Sáha, Petr | ||||||||||
Document type: | Peer-reviewed article (English) | ||||||||||
Source document: | Materials Science and Engineering C. 2019, vol. 95, p. 440-449 | ||||||||||
ISSN: | 0928-4931 (Sherpa/RoMEO, JCR) | ||||||||||
Journal Impact
This chart shows the development of journal-level impact metrics in time
|
|||||||||||
DOI: | https://doi.org/10.1016/j.msec.2018.04.050 | ||||||||||
Abstract: | Fabrication of porous and biologically inspired biomaterials that mimic the formation of microstructural structures of nacre in the form of calcite (CaCO3) and evaluation of the biocompatibility of such organic-inorganic composite scaffold for bone tissue engineering, are focus of this paper. Nacre's self-assembly characteristics are concerned about the development of calcite filled biomineralized scaffold following the nature based biomineralization process and biomimetic applications. The PVP-CMC hydrogel film, comprised of PVP:0.2, CMC:0.8, PEG:1.0, Agar:2.0, Glycerene:1.0 and water:95.0 w/v%; acts as catalyst and template for the nucleation and growth of the inorganic CaCO3 within the scaffold. The PVP-CMC hydrogel (in the dry state) was immersed in ionic solutions (g/100 ml) of Na2CO3 and CaCl2·H2O in different concentrations sets i.e. Set-1: 10.50/14.70; Set-2: 5.25/7.35; Set-3: 4.20/5.88; Set-4: 2.10/2.94; Set-5: 1.05/1.47, Set-6: 0.55/0.55 for 90 min. As a result, “PVP-CMC-CaCO3” hydrogel scaffold was fabricated having bio-inspired structural and functional properties. Cell proliferation and cell viability were examined until 7 days in the presence of “PVP-CMC-CaCO3” scaffolds using permanent cell lines MG63 (human osteosarcoma), L929 (murine fibroblasts) as well as cultures from mouse bone explants (CC-MBE), confirmed that the said hydrogel scaffolds are biocompatible. But, from mechanical strength as well as biocompatibility point of view, scaffolds prepared in Set-1 to 3 ionic solutions were superior. In conclusion, these three calcite filled hydrogel scaffolds are recommended and can be used for osseointegration. © 2018 Elsevier B.V. | ||||||||||
Full text: | https://www.sciencedirect.com/science/article/pii/S0928493117302758 | ||||||||||
Show full item record |