Contact Us | Language: čeština English
Title: | Spectral clustering effect in software development effort estimation | ||||||||||
Author: | Šilhavý, Petr; Šilhavý, Radek; Prokopová, Zdenka | ||||||||||
Document type: | Peer-reviewed article (English) | ||||||||||
Source document: | Symmetry. 2021, vol. 13, issue 11 | ||||||||||
ISSN: | 2073-8994 (Sherpa/RoMEO, JCR) | ||||||||||
Journal Impact
This chart shows the development of journal-level impact metrics in time
|
|||||||||||
DOI: | https://doi.org/10.3390/sym13112119 | ||||||||||
Abstract: | Software development effort estimation is essential for software project planning and management. In this study, we present a spectral clustering algorithm based on symmetric matrixes as an option for data processing. It is expected that constructing an estimation model on more similar data can increase the estimation accuracy. The research methods employ symmetrical data processing and experimentation. Four experimental models based on function point analysis, stepwise regression, spectral clustering, and categorical variables have been conducted. The results indicate that the most advantageous variant is a combination of stepwise regression and spectral clustering. The proposed method provides the most accurate estimates compared to the baseline method and other tested variants. © 2021 by the authors. Licensee MDPI, Basel, Switzerland. | ||||||||||
Full text: | https://www.mdpi.com/2073-8994/13/11/2119 | ||||||||||
Show full item record |