Contact Us | Language: čeština English
Title: | Controllable modification of the BaTiO3 nanoparticles using SI-ATRP approach and impact on the vibration sensing capabilities of their PVDF-based composites |
Author: | Mrlík, Miroslav; Fajkus, Přemysl; Gorgol, Danila; Cvek, Martin; Osička, Josef |
Document type: | Conference paper (English) |
Source document: | NANOCON Conference Proceedings - International Conference on Nanomaterials. 2021, p. 41-46 |
ISSN: | 2694-930X (Sherpa/RoMEO, JCR) |
ISBN: | 978-80-88365-00-6 |
DOI: | https://doi.org/10.37904/nanocon.2021.4322 |
Abstract: | In this contribution the ceramic nanoparticles, BaTiO3 (BT), were successfully and controllably coated with two monomers, poly(butyl acrylate) (PBA) and poly(methyl methacrylate) (PMMA) using SI-ATRP approach. The presence of the polymers on the surface was investigated using FTIR and TGA techniques. The molecular weight and polydispersity index were calculated from the gel permeation chromatography, while monomer conversion was confirmed using nuclear magnetic resonance. Both methods provide clear statement that controlled radical polymerization was successful. The surface of the neat BT, BT-PBA and BT-PMMA nanoparticles was investigated using BET analysis and using contact angle. The nanoparticles were mixed with poly(vinylidene fluoride) (PVDF) using micro compounder. The compatibility of the nanoparticles and PVDF matrix was evaluated investigation of the viscoelastic properties using dynamic mechanical analyzer. The contribution of the enhanced compatibility between the nanofiller and matrix was elucidated by electrical response to vibration testing. Finally, it will be presented how the SI-ATRP modification of BT nanoparticles with PBA and PMMA influence the capability for vibration sensing applications. © 2021 NANOCON Conference Proceedings - International Conference on Nanomaterials. All rights reserved. |
Full text: | https://www.confer.cz/nanocon/2021/4322-controllable-modification-of-the-batio3-nanoparticles-using-si-atrp-approach-and-impact-on-the-vibration-sensing-capabilities-of-their-pvdf-based-composites |
Show full item record |