Publikace UTB
Repozitář publikační činnosti UTB

Changes in the quality attributes of selected long-life food at four different temperatures over prolonged storage

Repozitář DSpace/Manakin

Zobrazit minimální záznam


dc.title Changes in the quality attributes of selected long-life food at four different temperatures over prolonged storage en
dc.contributor.author Šopík, Tomáš
dc.contributor.author Lazárková, Zuzana
dc.contributor.author Salek, Richardos-Nicolaos
dc.contributor.author Talár, Jaroslav
dc.contributor.author Purevdorj, Khatantuul
dc.contributor.author Buňková, Leona
dc.contributor.author Foltin, Pavel
dc.contributor.author Jančová, Petra
dc.contributor.author Novotný, Martin
dc.contributor.author Gál, Robert
dc.contributor.author Buňka, František
dc.relation.ispartof Foods
dc.identifier.issn 2304-8158 Scopus Sources, Sherpa/RoMEO, JCR
dc.date.issued 2022
utb.relation.volume 11
utb.relation.issue 14
dc.type article
dc.language.iso en
dc.publisher MDPI
dc.identifier.doi 10.3390/foods11142004
dc.relation.uri https://www.mdpi.com/2304-8158/11/14/2004
dc.subject long-term storage en
dc.subject food quality en
dc.subject food safety en
dc.subject long-life food en
dc.subject temperature regimens en
dc.description.abstract This study reports the development of selected indicators affecting changes in food quality and safety of selected long-life canned (Szeged goulash, canned chicken meat, pork pate, canned tuna fish) and dehydrated (instant goulash soup) food during a two-year storage experiment at four different temperatures. The storage temperatures were selected to represent Arctic (-18 degrees C), temperate (5 degrees C), subtropical (25 degrees C) and tropical (40 degrees C) climatic zones where such food is likely to be stored during, for example, humanitarian and military missions. Microorganism amounts below the detection limit (p < 0.05), regardless of the storage temperature (p >= 0.05), were monitored in canned samples. The contents of dry matter, fat and proteins did not change during storage, regardless of the storage temperature (p >= 0.05). During the 24-month storage, all food showed an increase in the level of ammonia (p < 0.05) and the TBARS-value (p < 0.05), whereas the rate of increase in both parameters was significantly higher at higher storage temperatures (p < 0.05). The losses of individual amino acids during storage ranged from 5% rel. calculated on the amino acid contents in Month "0" up to 15% rel. (p < 0.05). With storage temperatures above the freezing point, the hardness values decreased with the increase in the storage temperature (p < 0.05) and prolongation of the storage period (p < 0.05). Moreover, with temperatures of -18 degrees C, the development of hardness, measured as the "decrease rate", was significantly higher compared to the absolute values. en
utb.faculty Faculty of Technology
utb.faculty University Institute
dc.identifier.uri http://hdl.handle.net/10563/1011056
utb.identifier.obdid 43883943
utb.identifier.scopus 2-s2.0-85134001019
utb.identifier.wok 000831996800001
utb.identifier.pubmed 35885247
utb.source j-scopus
dc.date.accessioned 2022-07-27T09:08:40Z
dc.date.available 2022-07-27T09:08:40Z
dc.description.sponsorship Tomas Bata University in Zlin, TBU: IGA/FT/2019/006, IGA/FT/2020/006; Ministerstvo Obrany České Republiky, MOČR
dc.description.sponsorship Ministry of Defence of the Czech Republic; Tomas Bata University in Zlin [IGA/FT/2019/006, IGA/FT/2020/006]
dc.rights Attribution 4.0 International
dc.rights.uri https://creativecommons.org/licenses/by/4.0/
dc.rights.access openAccess
utb.ou Department of Food Technology
utb.ou Centre of Polymer Systems
utb.ou Department of Environmental Protection Engineering
utb.contributor.internalauthor Šopík, Tomáš
utb.contributor.internalauthor Lazárková, Zuzana
utb.contributor.internalauthor Salek, Richardos-Nicolaos
utb.contributor.internalauthor Purevdorj, Khatantuul
utb.contributor.internalauthor Buňková, Leona
utb.contributor.internalauthor Jančová, Petra
utb.contributor.internalauthor Gál, Robert
utb.contributor.internalauthor Buňka, František
utb.fulltext.affiliation Tomáš Šopík 1,2 , Zuzana Lazárková 1,* , Richardos Nikolaos Salek 1, Jaroslav Talár 3, Khatantuul Purevdorj 4, Leona Buňková 4, Pavel Foltin 3, Petra Jančová 4, Martin Novotný 3, Robert Gál 1 and František Buňka 1,3 1 Department of Food Technology, Faculty of Technology, Tomas Bata University in Zlín, Nam. T.G. Masaryka 5555, 760 01 Zlin, Czech Republic; sopik@utb.cz (T.Š.); rsalek@utb.cz (R.N.S.); gal@utb.cz (R.G.); frantisek.bunka@gmail.com (F.B.) 2 Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín, Tr. T. Bati 5678, 760 01 Zlin, Czech Republic 3 Laboratory of Food Quality and Safety Research, Department of Logistics, Faculty of Military Leadership, University of Defence, Kounicova 65, 662 10 Brno, Czech Republic; jaroslav.talar@unob.cz (J.T.); pavel.foltin@unob.cz (P.F.); martin.novotny5@unob.cz (M.N.) 4 Department of Environmental Protection Engineering, Faculty of Technology, Tomas Bata University in Zlín, Nam. T.G. Masaryka 5555, 760 01 Zlin, Czech Republic; purevdorj@utb.cz (K.P.); bunkova@utb.cz (L.B.); jancova@utb.cz (P.J.) * Correspondence: lazarkova@utb.cz; Tel.: +420-576-03-3011
utb.fulltext.dates Received: 23 June 2022 Accepted: 4 July 2022 Published: 6 July 2022
utb.fulltext.references 1. Tulach, P.; Foltin, P. Research Methods In Humanitarian Logistics—Current Approaches And Future Trends. Bus. Logist. Mod. Manag. 2019, 19, 459–474. Available online: https://ideas.repec.org/a/osi/bulimm/v19y2019p459-474.html (accessed on 23 June 2022). 2. Bubelová, Z.; Tremlová, B.; Buňková, L.; Pospiech, M.; Vítová, E.; Buňka, F. The effect of long-term storage on the quality of sterilized processed cheese. J. Food Sci. Technol. 2015, 52, 4985–4993. http://doi.org/10.1007/s13197-014-1530-4 http://www.ncbi.nlm.nih.gov/pubmed/26243918 3. Buňka, F.; Štětina, J.; Hrabě, J. The effect of storage temperature and time on the consistency and color of sterilized processed cheese. Eur. Food Res. Technol. 2008, 228, 223–229. http://doi.org/10.1007/s00217-008-0926-7 4. Foltin, P.; Brunclík, M.; Ondryhal, V.; Vogal, L. Usability Of Performance Indicators Of Logistics Infrastructure Availability In Supply Chain Designing. Bus. Logist. Mod. Manag. 2018, 18, 157–170. Available online: https://ideas.repec.org/a/osi/bulimm/v18y2018p157-170.html (accessed on 23 June 2022). 5. NATO Standard AMedP-1.11. Requirements of Individual Operational Rations for Military Use, B ed.; Version 1; NATO: Brussels, Belgium, 2019. 6. NATO Standard AMedP-1.18. Requirements of Group Operational Rations for Military Use, A ed.; Version 1; NATO: Brussels, Belgium, 2019. 7. STANAG 2937. Requirements of Individual Operational Rations for Military Use, 5th ed.; NATO: Brusel, Belgium, 2019. 8. Bubelová, Z.; Černíková, M.; Buňková, L.; Talár, J.; Zajíček, V.; Foltin, P.; Buňka, F. Quality changes of long-life foods during three-month storage at different temperatures. Potravin. Slovak J. Food Sci. 2017, 11, 43–51. http://doi.org/10.5219/688 9. Ham, Y.K.; Song, D.H.; Ha, J.H.; Park, S.K.; Kim, Y.R.; Chin, K.B.; Kim, H.W. Efficacy of ascorbic acid on processing characteristics and lipid oxidation of pre-rigor salted chicken breasts during vacuum refrigerated storage. LWT 2020, 118, 108691. http://doi.org/10.1016/j.lwt.2019.108691 10. Kristensen, D.; Hansen, E.; Arndal, A.; Trinderup, R.A.; Skibsted, L.H. Influence of light and temperature on the colour and oxidative stability of processed cheese. Int. Dairy J. 2001, 11, 837–843. http://doi.org/10.1016/S0958-6946(01)00105-4 11. Kristensen, D.; Skibsted, L.H. Comparison of three methods based on electron spin resonance spectrometry for evaluation of oxidative stability of processed cheese. J. Agric. Food Chem. 1999, 47, 3099–3104. http://doi.org/10.1021/jf981396p 12. Li, D.; Jia, S.; Zhang, L.; Li, Q.; Pan, J.; Zhu, B.; Prinyawiwatkul, W.; Luo, Y. Post-thawing quality changes of common carp (Cyprinus carpio) cubes treated by high voltage electrostatic field (HVEF) during chilled storage. Innov. Food Sci. Emerg. Technol. 2017, 42, 25–32. http://doi.org/10.1016/j.ifset.2017.06.005 13. Pinheiro, R.S.B.; Francisco, C.L.; Lino, D.M.; Borba, H. Meat quality of Santa Inês lamb chilled-then-frozen storage up to 12 months. Meat Sci. 2019, 148, 72–78. http://doi.org/10.1016/j.meatsci.2018.09.017 14. Sathivel, S.; Liu, Q.; Huang, J.; Prinyawiwatkul, W. The influence of chitosan glazing on the quality of skinless pink salmon (Oncorhynchus gorbuscha) fillets during frozen storage. J. Food Eng. 2007, 83, 366–373. http://doi.org/10.1016/j.jfoodeng.2007.03.009 15. Zamuz, S.; López-Pedrouso, M.; Barba, F.J.; Lorenzo, J.M.; Domínguez, H.; Franco, D. Application of hull, bur and leaf chestnut extracts on the shelf-life of beef patties stored under MAP: Evaluation of their impact on physicochemical properties, lipid oxidation, antioxidant, and antimicrobial potential. Food Res. Int. 2018, 112, 263–273. http://doi.org/10.1016/j.foodres.2018.06.053 http://www.ncbi.nlm.nih.gov/pubmed/30131137 16. Friedman, M. Food browning and its prevention: An overview. J. Agric. Food Chem. 1996, 44, 631–653. http://doi.org/10.1021/jf950394r 17. Kadidlová, H.; Ciprysová, Z.; Hoza, I.; Budínský, P. The effect of long-term storage on amino acid content of ready-to-eat entrées. Int. J. Food Sci. Technol. 2010, 45, 966–970. http://doi.org/10.1111/j.1365-2621.2010.02216.x 18. Pizzoferrato, L.; Manzi, P.; Vivanti, V.; Nicoletti, I.; Corradini, C.; Cogliandro, E. Maillard reaction in milk-based foods: Nutritional consequences. J. Food Prot. 1998, 61, 235–239. http://doi.org/10.4315/0362-028X-61.2.235 19. Casalinuovo, F.; Gazzotti, T.; Rippa, P.; Ciambrone, L.; Musarella, R.; Pratticò, E. Microbiological stability of canned tuna produced in Italy and in non-European countries. Ital. J. Food Saf. 2015, 4, 58–61. http://doi.org/10.4081/ijfs.2015.4780 20. Gram, L.; Ravn, L.; Rasch, M.; Bruhn, J.B.; Christensen, A.B.; Givskov, M. Food spoilage–interactions between food spoilage bacteria. Int. J. Food Microbiol. 2002, 78, 79–97. http://doi.org/10.1016/S0168-1605(02)00233-7 21. ISO Standard No. 4833-1. Microbiology of the Food Chain—Horizontal Method for the Enumeration of Microorganisms—Part 1: Colony Count at 30 Degrees C by the Pour Plate Technique; International Organization for Standardization: Geneva, Switzerland, 2013. 22. Harrigan, W.F. Laboratory Methods in Food Microbiology, 3rd ed; Academic Press: Amsterdam, The Netherlands, 1998. 23. ISO Standard No. 21527-1. Microbiology of Food and Animal Feeding Stuffs—Horizontal Method for the Enumeration of Yeasts and Moulds—Part 1: Colony Count Technique in Products with Water Activity Grater Than 0,95; International Organization for Standardization: Geneva, Switzerland, 2008. 24. ISO Standard No. 21527-2. Microbiology of Food and Animal Feeding Stuffs—Horizontal Method for the Enumeration of Yeasts and Moulds—Part 1: Colony Count Technique in Products with Water Activity Less Than or Equal to 0,95; International Organization for Standardization: Geneva, Switzerland, 2008. 25. ISO Standard No. 1442. Meat and Meat Products—Determination of Moisture Content (Reference Method); International Organization for Standardization: Geneva, Switzerland, 1997. 26. ISO Standard No. 1871. Food and Feed Products—General Guidelines for the Determination of Nitrogen by the Kjeldahl Method; International Organization for Standardization: Geneva, Switzerland, 2009. 27. ISO Standard No. 17189. Butter, Edible Oil Emulsions and Spreadable Fats—Determination of Fat Content (Reference Method); International Organization for Standardization: Geneva, Switzerland, 2003. 28. Buňka, F.; Hrabě, J.; Kráčmar, S. The effect of sterilisation on amino acid contents in processed cheese. Int. Dairy J. 2004, 14, 829–831. http://doi.org/10.1016/j.idairyj.2004.02.008 29. ISO Standard No. 8586. Sensory Analysis—General Guidelines for the Selection, Training and Monitoring of Selected Assessors and Expert Sensory Assessors; International Organization for Standardization: Geneva, Switzerland, 2012. 30. ISO Standard No. 8589. Sensory Analysis—General Guidance for the Design of Test Rooms; International Organization for Standardization: Geneva, Switzerland, 2007. 31. Buňka, F.; Kříž, O.; Veličková, A.; Buňková, L.; Kráčmar, S. Effect of acid hydrolysis time on amino acid determination in casein and processed cheeses with different fat content. J. Food Comp. Anal. 2009, 22, 224–232. http://doi.org/10.1016/j.jfca.2008.10.023 32. Stevenson, A.; Cray, J.A.; Williams, J.P.; Santos, R.; Sahay, R.; Neuenkirchen, N.; Mcclure, C.D.; Grant, I.R.; Houghton, J.D.; Quinn, J.P.; et al. Is there a common water-activity limit for the three domains of life? ISME J. 2015, 9, 1333–1351. http://doi.org/10.1038/ismej.2014.219 33. Fountoulakis, M.; Lahm, H.W. Hydrolysis and amino acid composition analysis of proteins. J. Chromatogr. A 1998, 826, 109–134. http://doi.org/10.1016/S0021-9673(98)00721-3 34. Sarwar, G.; Christensen, D.A.; Finlayson, A.J.; Friedman, M.; Hackler, L.R.; Mackenzie, S.L.; Pellett, P.L.; Tkachuk, R. Inter- and Intra-Laboratory Variation in Amino Acid Analysis of Food Proteins. J. Food Sci. 1983, 48, 526–531. http://doi.org/10.1111/j.1365-2621.1983.tb10781.x 35. Lazárková, Z.; Buňka, F.; Buňková, L.; Holáň, F.; Kráčmar, S.; Hrabě, J. The effect of different heat sterilization regimes on the quality of canned processed cheese. J. Food Process Eng. 2011, 34, 1860–1878. http://doi.org/10.1111/j.1745-4530.2009.00376.x 36. Lazárková, Z.; Buňka, F.; Buňková, L.; Valášek, P.; Kráčmar, S.; Hrabě, J. Application of different sterilising modes and the effects on processed cheese quality. Czech J. Food Sci. 2010, 28, 168–176. http://doi.org/10.17221/44/2008-CJFS 37. Darragh, A.J.; Garrick, D.J.; Moughan, P.J.; Hendriks, W.H. Correction for Amino Acid Loss during Acid Hydrolysis of a Purified Protein 1. Anal. Biochem. 1996, 236, 199–207. http://doi.org/10.1006/abio.1996.0157 38. Holman, B.W.B.; Coombs, C.E.O.; Morris, S.; Kerr, M.J.; Hopkins, D.L. Effect of long term chilled (up to 5 weeks) then frozen (up to 12 months) storage at two different sub-zero holding temperatures on beef: 1. Meat quality and microbial loads. Meat Sci. 2017, 133, 133–142. http://doi.org/10.1016/j.meatsci.2017.06.015 39. Babji, A.S.; Chin, S.Y.; Seri Chempaka, M.Y.; Alina, A.R. Quality of mechanically deboned chicken meat frankfurter incorporated with chicken skin. Int. J. Food Sci. Nutr. 1998, 49, 319–326. http://doi.org/10.3109/09637489809089405 40. Gokalp, H.Y.; Ockerman, H.W.; Plimpton, R.F.; Harper, W.J. Fatty Acids of Neutral and Phospholipids, Rancidity Scores and TBA Values as Influenced by Packaging and Storage. J. Food Sci. 1983, 48, 829–834. http://doi.org/10.1111/j.1365-2621.1983.tb14910.x 41. Gomes, H.D.A.; Da Silva, E.N.; Lopes do Nascimento, M.R.; Fukuma, H.T. Evaluation of the 2-thiobarbituric acid method for the measurement of lipid oxidation in mechanically deboned gamma irradiated chicken meat. Food Chem. 2003, 80, 433–437. http://doi.org/10.1016/S0308-8146(02)00499-5 42. Datta, N.; Deeth, H.C. Age Gelation of UHT Milk—A Review. Food Bioprod. Process. 2001, 79, 197–210. http://doi.org/10.1205/096030801753252261 43. Datta, N.; Elliott, A.J.; Perkins, M.L.; Deeth, H.C. Ultra-high-temperature (UHT) treatment of milk: Comparison of direct and indirect modes of heating. Aust. J. Dairy Technol. 2002, 57, 211–227.
utb.fulltext.sponsorship This research was funded by the Ministry of Defence of the Czech Republic, grant INTAL: Implementation of new technologies and procedures into the logistic support of the Army of the Czech Republic, and by internal grants of Tomas Bata University in Zlin no. IGA/FT/2019/006 and no. IGA/FT/2020/006.
utb.wos.affiliation [Sopik, Tomas; Lazarkova, Zuzana; Salek, Richardos Nikolaos; Gal, Robert; Bunka, Frantisek] Tomas Bata Univ Zlin, Fac Technol, Dept Food Technol, Nam TG Masaryka 5555, Zlin 76001, Czech Republic; [Sopik, Tomas] Tomas Bata Univ Zlin, Univ Inst, Ctr Polymer Syst, Tr T Bati 5678, Zlin 76001, Czech Republic; [Talar, Jaroslav; Foltin, Pavel; Novotny, Martin; Bunka, Frantisek] Univ Def, Fac Mil Leadership, Dept Logist, Lab Food Qual & Safety Res, Kounicova 65, Brno 66210, Czech Republic; [Purevdorj, Khatantuul; Bunkova, Leona; Jancova, Petra] Tomas Bata Univ Zlin, Fac Technol, Dept Environm Protect Engn, Nam TG Masaryka 5555, Zlin 76001, Czech Republic
utb.scopus.affiliation Department of Food Technology, Faculty of Technology, Tomas Bata University in Zlín, Nam. T.G. Masaryka 5555, Zlin, 760 01, Czech Republic; Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín, Tr. T. Bati 5678, Zlin, 760 01, Czech Republic; Laboratory of Food Quality and Safety Research, Department of Logistics, Faculty of Military Leadership, University of Defence, Kounicova 65, Brno, 662 10, Czech Republic; Department of Environmental Protection Engineering, Faculty of Technology, Tomas Bata University in Zlín, Nam. T.G. Masaryka 5555, Zlin, 760 01, Czech Republic
utb.fulltext.projects INTAL
utb.fulltext.projects IGA/FT/2019/006
utb.fulltext.projects IGA/FT/2020/006
utb.fulltext.faculty Faculty of Technology
utb.fulltext.faculty University Institute
utb.fulltext.faculty Faculty of Technology
utb.fulltext.ou Department of Food Technology
utb.fulltext.ou Centre of Polymer Systems
utb.fulltext.ou Department of Environmental Protection Engineering
utb.identifier.jel -
Find Full text

Soubory tohoto záznamu

Zobrazit minimální záznam

Attribution 4.0 International Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je Attribution 4.0 International